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GLOSSARY

Single Sideband-frequency division multiplexing
Pseudo-noise

Test Tone-to-noise

Channels/megacycle

Intrinsic signal-to-noise ratio

The bandwidth for which the S/N in the receiver is one
Random Access Noise Signal Address Communications
Voice channel bandwidth

RF bandwidth (cps; sometimes megacycl_es)

Duty factor

Number of channels

Signal duration or integration time per decision

Number of decisions (or words) per voice sample
Number of bits per decision
FM index of modulation

That value of signal-to-noise ratio for which the
decision error noise = quantization noise

Noise power density in watts/cps

Utility function
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PN-FM - Analog frequency modulation of a subcarrier using
pseudo-noise multiplexing

f-t Matrixing- Generic for communications techniques using discrete
frequency and time multiplexing

M-ary - Refers to an alphabet of order M
AGC - Automatic gain control
TWT - Traveling wave tube
DSBSC - Double sideband suppressed carrier
a - Error rate at the output of the detector
n 2 - Average signal-to-noise ratio at the output of the

matched filter
Z(t) - Complex signal

n(t) - Complex white gaussian process of spectral density
N, watts/cps

A - Waveform amplitude

W, - Carrier frequency

g(t) - Pseudo random phase modulation

TP - Relative time shift of the pth clutter signal
E - Signal energy

P - Power of kP ciutter signal

Q(X) - Multiplexing penalty function in db

X - Computational function of Pg/Ny and G,

C - Channel capacity

Ccn - Infinite bandwidth channel capacity
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log - natural logarithm unless otherwise specified

- X
epoX =2

Conventional - Binary transmission using non-pseudo noise signals to
represent a ''one' or a ""zero'" (i.e., on-off, FSK, PSK,
etc.). The presence or absence of a ""one'' or a ''zero"
is detected by making a decision on each bit.

Signal - A generic term for unique waveforms specifically
Address assigned to particular users or stations

FMFB - Frequency modulation with feedback



Section 1

INTRODUCTION

The goal of this contract is to develop, analyze, and
compare modulation techniques for multiple -access satellite
communications systems. Results pertaining to development
and analysis goals were reported in the Phases I and II re -

(1)

port. The comparison of modulation techniques is the
principal subject of this document.

This program has been restricted to the study of those
modulation techniques of particular interest for voice com-
munications using active synchronous satellite systems. The
study has considered the complete spectrum of modulation
techniques to ensure a final comparative analysis of the most
promising candidate techniques. In many cases, the analy-
sis was extended to include the specification of system con-

figurations and parameters, where necessary, for a mean-

ingful evaluation of the modulation techniques.
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By its very nature, a quantitative comparative analysis
requires that some standard or reference system be specified.
The reference system most commonly used today is the SSB-
FDM telephone system. This system is used as th¢ refer-
ence throughout this report and serves as the basis for two
types cf comparisons:

(2) Comparison base€d on communications channel para -

meters.

(b) Comparison based on the operational flexibility and
and implementation complexity of various modulation
techniques.

The fundamental methods of comparative analysis used
in this report have been studied in detail in Ref. (2). Itis
assumed that the reader is familiar with this work, summar-
ized in Appendix D. These methods have been extended to in-
clude pseudo-noise (PN) techniques. In particular, the theory
is extended to digital communications using higher -order (M-
ary) signal alphabets with PN-mulitplexing, as well as to

analog modulation systems multiplexed by means of PN-

2
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subcarriers. Basic questions as to the theoretical perform-
ance of PN-multiplexing techniques are answered in this re-
port.

Spread spectrum modulation methods known as F-T
Matrixing likewise have been evaluated. It was found that the
theoretical performance for high quality voice is much poorer
then that of the PN and conventional methods. The analysis
is given in Appendix 8.

The key performance parameters in the analysis are the
test tone -to-noise ratio (T.T./N), the full load sinusoid (in-
t:insic) signal-to-noise ratio (PS/NK), and channels (i.e.,
taikers) per megacycle (G). These parameters, their origins
and significances are discussed in the appendixes to this report.

The theoretical study of modulation techniques orders
the systems along two scales for a given voice channel quality
(test tone-to-noise ratio). The scales are:

(2) Intrinsic signal-to-noise ratio in a conventional tele-

phone channel 0X< (PS/NK)DB

(b) Number of voice channels per megacycle of RF

-3



bandwidth 0<G £250

The significance of the pa.r'ameter (PS /NK) can be seen
by noting that for SSB-FDM, the (T.T./N) is directly pro-
portional to (PS/NK). Therefore, one can conveniently relate
the results to the selected reference system. (This approach
has been commonly used to compare SSB with wideband FM. )

The theory developed here uses approximations which
are good for véice systems of reasonable and excellent quality.
However, whereas a large amount of experimental data is
available for conventional systems, data is lacking for the
PN-systems. A recommended step beyond the work reported
here is further study by means of experimentation over a
SYNCOM channel.

The operational and implementation part of the study
compares the various techniques on the basis of onl-board
hardware complexity, ease of channel assignment, ground
station hardware complexity, and system flexibility. The

comparison here will be given by means of tables.




intoc eight sections. The maih-
ematical results used for the comparative analyses are discussed
in Section 2. These results are derived in detail in the appendixes.
Based on these results, several measures of comparison of mod-
ulation techniques are discussed in Section 3, using graphical

data prepared from the theoretical equations as a source., In
Section 4, comparisons are made of the modulation techniques,
while the system parameters are compared in Section 5. Con-

clusions, performance improving operations, the strong talkers

. problems,and recommendations are discussed in Sections 6

through 9 respectively.

The principal conclusions as stated in Section 6 are:

(2) For high-quality voice corresponding to T. T/N = 48db ,
SSB-up and composite FMFB down, and PN multiplexing
with higher-order (M-ary) alphabets are approximately
equivalent with respect to talkers per megacycle and PS/NK.

(b) In the case of lower quality voice (T.T. /N = 42 db, for

example) the power requirements specified by

5



(Pg/N for FM and PN are approximately the

K)DB
same. However, from a channel bandwidth utilization
point of view, FM is more efficient.

(c) PN requires less complexity of satellite equipment in

comparison to SSB up and composite FM down.,

(d) Where RF bandwidth is not a severe constraint, PN-

multiplexing techniques require the least amount of
Pg/Ng in the down link,

As a ;'esult of conclusions (a) and (d), it is recomunended
that further work be performed primarily in the experimental
area. Therefore, IBM's principal recommendation is that a
comprehensive experimental program using RANSAC over a

SYNCOM channel be initiated. This recommendation is discussed

in detail in Section 9.

ot

w PS/No is the ratio of the equivalent sinusoidal power referred
to the ground receiver to the receiver noise spectral density

(watts/cps).



Section 2

MATHEMATICAL RESULTS USED IN COMPARISON STUDY

The mathematical results discussed in this section are
developed in greater detail in the appendixes. Appendixes A
ar;d B develop the theory of PN-multiplexing using digital
and analog modulation techniques respectively, while Appendix
C summarizes the theory of conventional multiplexing as
developed by Stewart and Huber.

Subsections 2.1 and 2. 2 summarize the mathematical
concepts needed to perform the comparisons made in later
sections and to give the reader a feel for the significance of
the important equations.

2.1 Conventional Modulation Techniques

The comparison method of particular interest in this study
is the procedure uséd in Reference 2 (and by others) in which
the single voice channel characteristics are specified in terms
of the test tone-to-noise ratio at the point of zero relative level
located at the toll switchboard. This work has been developed
for conventional modulation techniques and is extended in this

study to include PN-multiplexing.

Lrd

=



his criterion is widely used in wire-line carrier systems,
and requires definition. To specify the power of a signal in a
voice channel at some point in a wire transmission system, it is
convenient to measure the power of the signal (in db's) at that
point as a multiple of the power that exists at some reference
point under test conditions. The reference power is referred to

as the zero relative level, and is developed at the test point

located at the toll switchboard. When a test condition is developed

by applying a 1000 cps sinusoidal voltage (or test tone), this
signal developes 1 mw of power at the point of zero relative
level. With this method, the a‘t.asolute power level of x db mw
developed along the link corresponds to a relative level of

x db.

In using the test tone as a voice channel reference signal, and
considering the test tone-to-noise ratio at the zero rélative
point, it is convenient to assume the voice bandwidth to be 3.1 kc.
This voice bandwidth combined with the frequency response
characteristic of the human ear, or psophometric weighting,
provides a noise reduction of 3.5 db over a white gaussian
noise band of 4 kc. The comparisons of Stewart and Huber(zt)ake

-8-




advantage of this noise improvement, and the same benefits
will be assumed in this study where appropriate.

The modulation techniques have been compared (2) by
using the SSB-FDM voice channels as a reference. This
channel has been investigated extensively, both analytically
and experimentally, so it is no accident that the SSB-FDM
channel is used as a reference. The combined voice signal in
the SSB-FDM channel is a fluctuating signal, whose statistical
characteristics are discussed in Section 7.

Briefly, the instantaneous amplitude of the multiplexed voice
signals can be represented in terms of a model, which is a random
signal with gaussian amplitude distribution. This model becomes
more accurate as the number of component voice signals increases.

The peak power at the point of zero reference level of the
multiplexed voice signal is defined as the power level exceeded
by the gaussian model no more than 0. 003% of the time.

A multiplex full load sinusoid is defined as a sinusoid whose
pPeak power at the zero relative level is equal to the peak power
of the multiplexed voice signal just defined. PS is defined as
the average power of the multiplex full load sinusoici measured at

-9



the zero relative level.

The modulation comparison is performed by specifying the voice
channel quality in terms of the test tone-to-noise ratio, and
determining the input full load sinusoid-to-noise ratio, PS/NK,
that gives rise to the required test tone-to-noise ratio for various
modulation techniques. In this case, NK is the total thermal
noise in the bandwidth occupied by K, SSB-FDM channels.
Appendix D summarizes the principal results of Reference 2.
(Note that PS/ N, does not have the physical significance in the
case of frequency modulation, for example, as it does in the
SSB-FDM case.)

The effect of intermodulation noise, if it exists, has not
been incorporated in the results summarized in Appendix D,
with the exception of the cases for Frequency Division Multiplex
Phase Modulation and Multicarrier PCM. The amplifiers
(in particular, the satellite repeater amplifier) have a nonlinear
power-out versus power-in relation, so the amplifier operating
pPoint and the input signal dynamic range must be constrained so
as to restrict the intermodulation noise within specified bounds.

The noise power ratio (NPR) specifies the level of the noise due to

-10-
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intermodulation in the voice channel. This quantity is defined
as the signal-to-noise ratio when the input to the SSB-FDM channel
under consideration is white noise with average noise power
equal to CCIR's equivalent noise power for SSB-FDM voice

(2, 15)
channels. The signal power is the average power
measured in a specific voice channel under the conditions
specified. The noise power is the average power measured when
the input to the voice channel under consideration is made equal
to zero, but the other channels have the same input applied as-
in the signél power measurement case,

For the SSB-FDM case, in order to meet a noise power ratio
requirement of 34,5 db, a test tone-to-noise penalty of 2.7 db
must be met. This assumes that the square root of the
instantaneous power output versus the corresponding input quantity
is a third-order polynomial; also, that the total input power
at any given time is allowed to exceed the input power level
that gives rise to the maximum output power, Pmax’ only
0.01 % of the time.

In the case of Frequency Division Multiplex Phase Modulation,

the case of 1% overload and 0.1% are considered in Reference 2.



Hence, equation (D-6a) includes the effect of intermodulation
noise.

In applying the results of the FM performance (2) to the
SSB up and composite FM down case, it will be assumed that
in the combining of SSB to composite FM at the satellite the 3 db
test tone-to-noise penalty of SSB is incurred.
2.2 PN - Multiplexing Techniques
2.2.1 Digital Modulation

Appendix A develops in some detail the theory of PN multiplex-
ing using digital modulation. This section summarizes this

work and gives several examples to illustrate its significance.

. » S TT
;.. | Correlation |a IMessage A 2 or _

- g S ~ N
———hh = Detector ""'" Decoder [ E —

Figure 1. Receiver
Figure 1 is a block diagram of a typical receiver. The
correlation detector can be either RF phase coherent or RF
phase incoherent. It can be shown that for a higher order

alphabet with the order of the alphabet M»D 1, there is little

difference between coherent and incoherent reception. The analysis

used here will assume the incoherent (matched filter followed by

—~19.
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an envelope detector) case.

The input signal Z(t) includes the mth message waveform Zm(t),

the clutter signals Zc(t), and thermal noise n(t): (see addendum)
Z(t) =AZ_ (t) + Zc(t) + n(t) (2-1)
It is assumed that at the particular receiver of interest, m,
there are M equiprobable signaling waveforms of which only
one is sent at a time. This particular signaling waveform
combined with thermal noise and the sum of the clutter signals
is present at the input to the matched filter. If the input signal
matches a particular filter, the average signal-to-noise ratio

at the output of the matched filter at the instant of match will be

2 P w T
Yl‘ = / S \ 2 I R T 1Y
\dN ] [ P w \e=a)
K S o
— s J(K-1) + 1
as derived in Appendix A, \NK, \2 w,
Pg . ) C .
—— =  full load signal-to-noise ratio (intrinsic signal-to-noise
NK ratio)
K = number of voice channels
T = duration of signal waveform
2W = RF bandwidth

Wo = audio bandwidth (i.e., 4 kc)
d = duty factor (or activity factor)

-13-




The matched filter block actually consists of M matching
operations. Therefore, there is an output for each of the M
possible signals. It is the function of the decoder to make a
decision as to which signal is received. Assuming orthogonal
signals,a maximum likelihood incoherent detector, and greatest -
of decision, the error rate is related to the output signal-to-
noise ratio by the expression:

i 2
o - I"; L exp {-1/2Y\ } (2-3)

The large signal-to-noise assumption is reasonable since
we are concerned with the case of high quality speech. For
the case of biphase message coherent modulation there is a
3 4b advantage over orthogonal (M=2) signals, since a
correlation coefficient of -1 can be obtained in the former.

The Audio signal-to-noise ratio at the output of the low pass

filter is shown in Appendix A to be:

N 2o+ Q(M)
where Q(M) is the quantization noise. This fidelity criterion
is a good approximation to both binary and M-ary voice trans-
missions and is used here for these cases.

-~14~




In general, Q(M) = Z_Zmb where m, is the total number
of bits in the sample waveform., If q decisions of m bits each
are made,

my = qm (2-5)
Therefore,

Q) =M (2-6)
To complete the analysis one must relate (S/N) to (T.T./N),
which is also discussed in Appendix A:

(T.T. /N)DB = (s/N)DB-6 (2-7)
By combining Equations (2-2) to (2~7) one can express
(T.T./N)as a function of the communication channel paramgters:

(T.T./N) = £ (ps/ (dNg), G, M, oD (2-8)

where K>> 1, and,

G = 250 I WoK ] hannel/
= ———— =C nnei/mc
| 2w

Eq(2-8) is given by Equation (A-34) of Appendix A

and is included here:

b_ Wo T
- S - .
(T.T. /N)tota.l =2.2 ( = ) Ps W, 10 loglo(M 1)
K — 2 (K-1)+1
Ng 2W

M P
-10 log10{1+ %:"%—exp I!:I/Z(dl\? \,’

ANk /
W_T I .
Pe W j -
—2 0 (k-1)+1
NK 2W
(2-9)

-15-
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The function G gives the number of channels per megacycle.
It is also a measure of the mutual interference and vanishes
when the RF bandwidth becomes extremely large, as required.
’Ithis does not mean, however, that the channel capacity

P

vanishes. On the contrary, the channel capacity becomes __S
No ’
which is thermal noise limited. In fact, when the band-

width is infinite the maximum amount of information can be
transferred since there is a complete absence of clutter. When
the power is infinite the amount of information per active user
which can be transferred is clutter limited.

In summary, the expression for the test tone-to-noise
(T.T. /N)DB, eéuation (2-9), contains the effects of thermal
noise, clutter, and quantization noise. This expression is general
in the sense that it is applicable to conventional binary systems
as well as for the M-ary alphabet. For M»>l, it includes the
case of coherent detection. The improvement achieved by
using biphase modulation can be included by recognizing that

P

a 3 db improvement will be realized in N..- The proper

interpretation of d (i.e., d =1/2 ) enables one to consider

on-off binary as well. The time duration per decision is

-16-




always made less than or equal to the sampling rate.

To further interpret the results of equation (2-9), considera-
tion will be given to the case in which the decision error is equal
to the quantization noise. This condition will be referred to
loosely as operating at the ''knee' of the (T.T. /N)DB vs

PS/NK curve. In the binary case this occurs approximately

when 1

20t == (2-10)
M

or in the general M-ary case the approximate location of the -

knee occurs when,

2q

206=M" (2-11)

Using equation A-36, A-4l, we obtain('I;T) at the knee
N

T.T.)

— = 3(2mqg-3 2-12

(B) = 3ema-3) (2-12)

The parameter q is the number of words per voice sample

and m-logzM is the number of bits per word. For example,

m=l, q=10 represents conventional PCM, transmitting 10 bits

per sample and requiring 10 binary decisions per sample

(i. e., 10 one-bit words). From the test tone-to-noise ratio,

(T.T./N) » at the knee of the (T. T./N) vs P /N_ curve,
DB DB S K

it is clear that the same voice quality can be obtained in the

-17-




cases of m=1, q=10 and m=10, gq=1. However, in the latter
case single-word decisions are made, and 1024 waveforms are
required for each channel, one for each sample value. This
represents an extremely complex system unless the waveforms
used are delayed versions of the same signal, for example,
pulse rate modulation (or equivalently digital PPM)

To further comprehend the system operation at the knee
of the curve, W will be made very large in equation (A-36)

and solved for P_/N_. This value is denoted as (P_/N.))
S K S K o

and is given in equation (A- 43)

Ny

This is an extremely important expression and represents the

o , .
(__) = 4qd [Zq log M + log (M-1) (2-13)
oo}

threshold (intrinsic) signal-to-noise ratio for the case where
D

-

the RF bandwidth is much greater than -§- so as to permit
o
the effect of clutter to be neglected. When clutter can be neglected,

in the bit-by-bit decision case, M = 2 , we have:

P
(_._S > = 89%10g 2 (2-14)

-18-



For the same case, in the word-by-word decision case, q=1, M>)1,

- =12 log M
dNK o (2-15)

Thus, from Equation (2-14), when q=10, we have 27.2 db.

Pg

= 19.2 db is obtained from Equation (2-15) for the

dNK o ¢}
same number of message bits. The higher-order alphabet there-
fore requires approximately 8 db less power than a conventional
orthogonal binary system for good voice quality. However, the
less efficient system is somewhat simpler. If on-off binary is

Ps
used, a 3 db improvement in \Ng,/ is achieved since d=1/2,

Similarly, if biphase modulation coherent detection is
used a 3 db improvement is also achieved. For large-size
alphabets there is little difference in performance between
coherent and incoherent reception. |

As a possible compromise between complexity and efficiency,
We can assume that q=2, m=5, This gives the same quality and

reduces the complexity to a 32-level alphabet. Now, two

-Word decisions per sample are required with a reduction

-19-
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in efficiency. The 32-level alphabet system is a practical one
even for complex signal alphabets. For this case, from equation

P
(2-13), ) = 21.5 db. This results in a 2. 3 db increase
dNK (o o) :

in power over the more complex M-ary system and a savings
in complexity by a factor of 32. On the other hand this two-
word per sample system is 6 db more efficient than orthogonal
binary but only 3 db more efficient than on-off or biphase
modulation. The reduction in system complexity of conventional
binary over the two-word system is now reduced further.
2.2.2 PN-FM Modulatior

In the FM case the voice signal modulates a conventional
FM subcarrier which in turn is modulated by the PN subcarrier.
The FM signal is extracted the same way except that after
removing the PN-subcarrier at IF the signal is fed into a
conventional FMFB receiver. For FMFB we will use a model
developed in reference 3. Here it is shown that a valid model
for FMFB is to assume an M-ary alphabet with a greatest - of
decision for determining the channel which contains the received
frequency. The analog measurement of the frequency is then
obtained by feeding this channel output into a fréquency

-20-




discriminator. It has been shown that the model agrees with
FMFB required results. (3) Clearly, such a model is primarily
of theoretical interest since it permits analytical treatment of
FMFB. In this report, in particular, the theory of M-ary
PN systems, which have been déveloped for digital transmission,
is now directly applicable to FMFB; this theory is shown in
Appendix B. The order of the alphabef is directly proportional
to the FM .index.

For the purpose of this discussion assume that the PN-
signal is spread over an extremely large band so that the

mutual interference can be neglected. Using equation (C-7) we

have
/'T‘ 'T‘ \ -~ - / S\ ~n 1 A
— = 10 lo = Ht ZU log -
™% )M o £10 {ang /" 10# (2-16)

This is clearly the expression for a conventional FM system
above threshold. |

In the presence of mutual interference, the mathematical
expressions are more complex and require a slight modifica-

tion of the basic theory. This is also developed in Appendix B.

-21-




2.2.3 PN-Multiplexing Loss

The function Q, defined in equation A-46a, specifies the
additional db which must be added to (PS/ Ny)oo to overcome
the clutter in order to maintain the same voice quality as in the
absence of clutter. This function is defined at the knee of the

(T.T./N) versus (Pg/Ny) curve. From Eq A-50,

Q=101log 250

(2-17)
250 - G (Pg/Ny )

2,2.4  Utility Function For Optimizing "Power-Bandwidth" Product
The parameters PS/NK and G vary over a wide range. To
select these parameters in some optimum sense, one needs to define

a criterion. An interesting utility function is given in Eq A-57,

R

Since (PS/NK)db is proportional to satellite power in db and 1/G

is proportional to bandwidth, optimizing U gives a minimum power-

bandwidth product.

Where [ Fs in the down-link is expensive and not RF band-
No
width, the system should be designed so that performance is thermal

noise limited (i.e. 2W ) 3 s ). The intrinsic signal to noise
N,

ratio will then approximate S and G < 0. Figure 12

shows curves of Ps vs. G for M -ary alphabets in this region
N

of interest. K

-22~



THEORETICAL PERFORMANCE CURVES DISCUSSION

We have graphed a variety of characteristics which show the
behavior of PN-multiplexing systems. We also show a family
of curves of the theoretical output signal-to-noise ratio (S/N)o
for SSB, FM, and PCM (for M-ary coherent detection), Figures
9 and 10. The FM curves are shown with and without feedback,
demonstrating the threshold effect. These curves are obtained
from Ref 3. The dashed curves represent the characteristic
in the threshold region which would be obtained if FMFB is
used, while the solid curves represent the FM characteristic
without feedback. The PCM curves are for M-ary orthogonal
signals and demonstrate the PCM threshold.

Curves showing the intrinsic signal-to-noise ratio (PS/NK),
as functions of the number of channels per megacycle, are also
presented. In PN-FM it is assum;ad that the FM-bandwidth
is not greater than the PN subcarrier band.

All the curves shown assume an activity factor of 25%.

In case of on-off binary the activity factor is only 12. 5% while

in biphase binary the activity factor is 25%. However, since the
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biphase binary symbols are ne
provement over orthogonal binary is obtained making on-off
and biphase equivalent as far as PN multiplexing is concerned

The number of channels per megacycle is inversely proportional
to the activity factor as shown in equation (A-53) (and to the
correlation coefficient in biphase modulation). Similarly, the
intrinsic signal-to-noise ratio (PS/NK)db is reduced by the
logarithm of the activity factor. Thus, PN-multiplexing systems
should take full advantage of the activity factor,

The curves which are shown here are obtained by using the
equations in the Appendixes.
3.1 Conventional Modulation Techniques

The curves shown in Figure 9 are (S/N)o vs PS/NK for
various FM indexes with and without teedback. (These curves
are not(T. T./N)since appropriate loading characteristics have
not been included.) These curves are obtained from Ref 3. The
dashed curves represent the characteristic in the neighborhood
of the threshold, while the solid lines are those without feedback.
It is evident that the threshold signal-to-noise ratio without

feedback increases at a greater rate with increase in the
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modulation index than FM with feedback. A curve showing this
behavior more precisely for FMFB is Figure 1. This curve
was obtained from equation (B-9). The envelope of the FMFB
threshold characteristic (i.e., the knees) is similar to that
obtained in M-ary PCM since the mathematical model of FMFB
which is used inRef 3 postulates an M-ary 6rthogonal decision
procedure as a part of the FM reception process. In the
threshold region the M-ary error probability determines
the characteristic,

Curves of (T. T./N) vs (PS/NK) for conventional systems
are shown in kef 2.

3.2 PN Multiplexing

] i $emVariomsy Samm..
As discussed previously, PN multiplexi g inciu

p

message transmission and analog message transmission. In

Ref 3 the intimate relationship between FMFB and digital
transmission using M-ary sinusoidal signal alphabets is shown.
The computation procedure for PN multiplexing using both digital
and analog transmission is discussed in Appendix C. This
Procedure was used to obtain the curves which will be

discussed here.
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3.2.1 Digital Transmission
. T.
Figure 1l is a curve of f————} in db vs q, the number of
N
words per message sample. The test tone-to- total noise
ratio (includes decision plus quantization noise) is
computed at the knee of the PCM threshold characteristic.
It is a graph of equation (C-1).

Figure 2 is a curve of E,E vs q, equation (C-2). This

NKoo

quantity, (PS /NK) o© , is obtained by equating decision noise

to quantization noise and letting the RF bandwidth W become
infinite.
T.T.

From Figures 1 and 2, we obtain { "7} o vs.
f
\ S/ Nk} of Figure 3 when the PN signal bandwidth
is made infinite. The curves shown are the envelopes of
the knees of the threshold characteristics. An increase in

e . T.T. )
P /N by 3 db will increase by 3 db at which
S KjJoo N

point performance is quantization noise limited. As an example
for a 45db (T.T./N), a 9-bit M-ary alphabet requires an
intrinsic si 1-to-noi io, (P 2. .
intrinsic signal-to-noise ratio, ( S/NK) . of 12. 8 db. A

three-word per sample signal alphabet (q = 3) requires
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(PS’/‘IK)oo of 16, 4 db for the same
a bit-by-bit orthogonal decision procedure requires a

(PS /NK)Q§ of 20. 6 db. On-off and biphase modulation requires
only 17. 6 db. Thus for a given quality, the M-ary alphabet
gives the most efficient performance as far as intrinsic signal-
to-noise ratio is concerned.

In order to calculate the intrinsic signal-to-noise ratio as
a function of the number of channels per megacycle (i.e., for
finite bandwidth), we first obtain the function Q(X) shown in
Figure 4. Q(X) is the multiplexing penalty in db which must
be paid due to a finite RF bandwidth. The number of channels
per megacycle is then related to X and (PS/NK)OO (not in db)
via equation (C-5).

Figure 5 shows (PS/NK) a VS G, the number of channels
per megacycle, for (T.T./N =39 db and 45 db. It is clear that
the M-ary alphabets (q = 1) are most efficient in power and
bandwidth. The least efficient digital technique is orthogonal
binary (m = 1). Voice quality of 39 db can be achieved with
an intrinsic signal-to-noise ratio of 17 db and 10 channels

per megacycle. The latter assumed an activity factor of 25%.
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A unity activity factor will yield only 2.5 channels per megacycle
and will require 6 db more power,

Figure 6 compares the M-ary alphabet to bit-by-bit decisions
using orthogonal signals, on-off binary and biphase binary. Clearly,
the higher-order alphabet is more efficient in power and bandwidth.,
This result is expected when it is recognized that the M-ary alphabet
is equally effective against thermal noise and clutter. Thus, both
thermal noise and clutter rejection can be achieved simultaneously,
by increasing the alphabet order.

Figure 7 shows a family of curves which represents a utility func-
tion for choosing an operating point based on efficient use of both
power and bandwidth, A flat minimum exists. Where bandwidth
efficiency is not required this function loses much of its usefulness.

Figure 6 shows curves of (PS/NK) vs G for pseudo-noise multi-
plexing with FMFB. For the FM indexes chosen, the curves afe
steeper than those for digital transmission. Performance is far
superior to bit-by-bit decision binary communication but substantially
inferior to M-ary digital systems. The utility function.for these
systems is shown in Figure 8, and is also far inferior to M-ary digital
systems. (FMFB is shown in Ref 3 to be a type of M-ary orthogonal
alphabet.)

Other forms of analog modulation using PN multiplexing will exhibit
a similar behavior if the modulation exchanges b;.ndwidth for signal-to-

noise,
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3.3 General Conclusions About PN Multiplexing

*For good quality voice transmission PN multiplexing syste ms
require the use of M-ary alphabets in order to achieve low values
of intrinsic signai-to-noise ratio ('Ps/NK) and relatively high
values of channels per megacycle. The M-ary alphabets are
equally effective against thermal noise and clutter.

*Efficient utilization of power and bandwidth requires full
exploitation of the activity factor, since the power required is
directly proportional to it and the channels per megacycle is in-

versely proportional to this factor.

*Where RF bandwidth is not of primary concern but PS is,
N,
then optimum use of such a channel requires that 2 W 23 Ps i,
N
o

operation should be thermal noise limited.

*When 2W>> Pg performance is thermal noise limited and

v

when 2W«< Pg performance is clutter limited.
N,
*The PN signal is a '"sub-carrier" which rejects interference

by other PN subcarriers that use the common channel,

-29-
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Section 4
COMPARISON OF MODULATION TECHNIQUES

In this section we will compare the modulation techniques for a
given test tone-to-total noise ratio. In the conventional analog systems
we will assume that the test tone-to-thermal noise ratio is equal to the
test tone-to-distortion ratio. Thus, if we compute the test tone-to-
thermal noise ratio we will subtract 3 db to obtain the test tone-to-total
noise ratio. In PN multiplexing the computations automatically include
the total distortion,

We will compare modulation techniques using PN multiplexing,
various modulation techniques using conventional multiplexing, and
finally conventional multiplexing with PN multiplexing. Two parameters
will be compared: the intrinsic signal-to-noise ratio and the number of
channels per megacycle of RF bandwidth. The values of these parameters
will be determined for a given quality of performance specified by the
test tone-to-total noise ratio.

In all cases the choice of modulation parameters will reflect prac-
tical considerations.

For those techniques using digital transmission we will operate 3 db
above the knee of the operating characteristic. Thus, (Pg/NK) will be
increased by 3 db. We will also increase the value of(T.T. /N)by 3 db

so that the acceptable range of (T.T. / N)will actually be between 45 and

48 db.
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We will assume a 25% activity factor in all PN systems recognizing
that in the correlation-locked techniques (1) on-off operation is more dif-
ficuit to achieve. The results obtained assume that RF phase information
is not used although in the correlation-locked techniques this type of opera-
tion will improve performance. Our results will therefore be conservative
in this case. For good voice quality, performance is only slightly improved
when RF phase-lock is used, except in the special case of biphase modula-
tion. Here, we add a 3 db improvement in the intrinsic signal-to-noise
ratio and double the channels per megacycle.

All systems will be classified into three categories:

(1) Very good quality, T.T./N = 48 db

2) Good quality, T.T./N = 42 db

(3) Acceptable quality, T.T./N = 36 db
A dald o211 1

Ataklc will be used fur uus cuwmparison. we will require at least two chan-
nels per megacycle. Any modulation technique which cannot satisfy this
will be automatically eliminated. Thus, a 200-channel system will require
a satellite bandwidth less than 100 mcps.
4.1 Comparison of PN-Multiplexing Techniques

The comparison here is shown in Table 1. The two best PN modula-
tion techniques are: M-ary digital message transmission and PN-FMFB.
(The latter is an analog form of M-ary transmission with M small.) The
choice of the optimum modulation technique is based on the minimum value
of the utility function. It is quite clear that the M-ary systems are far more

efficient than PN-FM for the indicated parameters. For acceptable voice
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quality (T.T./N = 36 db), PN-FMFB is competitive, parituclarly where
power and not bandwidth is at a premium, as is the case in satellite com-
ion. Here, however, on-oif binary is aimost as good and much
simpler to implement. Thus, based on implementation, on-off binary is
preferable to PN-FMFB.

Table 2 shows a table of the M-ary system with a utility function dis-
placed from the minimum so as to reduce satellite power. This tradeoff
causes only a slight decrease in the number of channels per megacycle.
The utility function is also increased only slightly. Based on the utility
function performance is suboptimum, although still substantially better
than PN-FMFB. These parameters are perhaps more useful than those
based exactly on the minimum value of the utility function, since less satel-
lite power is required here with only a small loss in the channels per meg-
a cyele. Theea vaeulte will he compared with IMTD usiug vunveniional
multiplexing.

4.2 Comparison of Conventional Multiplexing Techniques

Table 3 shows a comparison of three conventional multiplexing tech-
niques based on the intrinsic signal-to-noise ratio and the number of chan-
nels per megacycle. Clearly, SSB has the maximum number of channels
per megacycle of any modulation system but it also requires substantially
more power than FM-FB and on-off conventional PCM. However, FMFB
is superior to PCM in satellite power requirements. In the region of
medium-to-acceptable voice quality FMFB also obtains more channels per

megacycle than PCM, Where bandwidth is at a premium and the power
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Table 1. Comparison of PN Multiplexing Techniques

(PN; M-ary with PN-FMFB)

PN-System (T. T.‘/N)DB (PS/NK)DB G
m=9,q=1 48 23.0 10.8
FM, u=25 48 23.4 2.58
m=8,q=1 42 22.5 12.3
FM, u=16 42 21.4 4.0
m=7,g=1 36 22.0 14.0
FM, u=10 36 19.4 6.3

Table 2. M-ary, PN-Multiplexing Parameters

M-ary PN System (T.T./N)p P/Nnn G
m=9,q=1 48 21 9.4
m=8,q=1 42 21 11.2
m=7,q=1 36 20 12.2
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Table 3. Comparison of Conventional Modulation

) Techniques
, Mod. Tech (T. T/N)DB (PS/NK)DB G
SSB 48 42 250
p = 10, Comp. FMFB 48 20 11.4
q =9; PCM (on-off) 48 26.6 13.9
SSB 42 36 250
u = 4; Comp. FMFB 42 22 25
q = 8; PCM (on-off) 42 25.6 15.6
SSB 36 30 250
i = 2; Comp. FMFB 36 22 41.6
q =7; PCM (on-off) 36 24.4 17.8
3
Table 4. Performance Parameters—PN Multiplexing
and Composite FMFB
Mod. Tech (T.T. /N)DB (PS/NK)DB G U
m=9, g=1 48 21 9.4 2.24
FMFB; u =10 48 20 11.4 1.75
m=8, gq=1 42 21 11.2 1.88
FMFB; u=4 42 22 25.0 0.88
m=7;, q=1 36 20 12.2 1.64
FMFB; p=2 36 22 41.6 0.53
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constraint is somewhat relaxed, SSB, or narrow deviation FM (u = 1) are
reasonable modulation techniques for acceptable voice quality. For high
quality systems it is necessary to exchange channels per megacycle for on-
board power.

4.3 PN-Multiplexing Compared to Conventional

Table 4 shows the performance characteristic between the PN, M-ary
system and conventional multiplexing using FMFB.

Table 4 shows that for very good quality PN multiplexing and large in-
dex FMFB (u = 10) are comparable as far as the channel parameters are
concerned. However, for good and acceptable quality, FMFB using rela-
tively narrow deviation FM makes better use of the channel bandwidth., It
is therefore quite clear that PN multiplexing is competitive with FMFB
where toll quality performance is required. Where satellite power is at a
Prouiuin and nol vandw idiil, die FIN Syslelns remain competiiive even dt
reduced quality. In fact, when W >> PS/NO the PN, M-ary digital tech-
niques are most efficient in the use of on-board power. The utility factor
which is useful for making a choice among PN systems is not very useful
for comparing PN systems to conventional ones, since the latter are in-
herently far more efficient in bandwidth for average quality. The utility
factor favors systems which make efficient use of bandwidth since it ex-
changes bandwidth for power on a db basis.

The numbers which have been chosen in this section for the compari-
son of conventional and PN multiplexing techniques indicate that the same

values of PS/NK and G can be achieved for both FMFB and PN multiplexing
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in the high quality case. Where RF bandwidth is more important than the
down link PS/ N0 » these parameter values represent a good compromise.
Here, the number of channels per megacycle, G, is an important compari-
son criterion. However, where the RF bandwidth is not of primary impor-
tance, the number of channels per megacycle is not significant as a com-
parison criterion. The quantity PS/NK is much more significant since it
then becomes the limiting factor on system performance. Under these con-
ditions, PN multiplexing using M-ary alphabets is superior to FMFB and,
in fact, is an optimum modulation technique. Whereas conventional FMFB
requires an RF bandwidth which is several times less than PS/ No, PN mod-
ulation operates most efficiently when the bandwidth is much greater than
the noise bandwidth. These conclusions can be illustrated by the following
example.

Consider the parameters chosen tor I'.1./N = 36 db, m = 7 and q=1.
As shown in Table 2, PS/NK =20 db and G = 12.2. If K = 200 channels are
required, the RF bandwidth will be 200/12.2 = 16.5 mcps. PS‘/NO can be

computed as

PS
(Py/Ny) = —— = 100,

N Kw
o o

where, W0 =4 ke. Therefore PS/No =100 KW0 = 80 mcps.
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For this case, the RF bandwidth is substantially less than

be superior as shown in Table 3.

To contrast this result with a case where PN modulation
will be preferred, assume an RF bandwidth of 100 mcps. Again
assuming K = 200, one can compute from equation (A-43) that
(Pg/Nk) = 14.7 db. From equation (A-47), X = 8.5 and for all

practical purposes Q(X) = 0. Thus
(Pg/Ny) = (Pg/Nyg)
and PS/No becomes (PS/NO) =(2 x 102) (4 x 103) (29.5) = 24 mcps.

This results in a power reduction of approximately 5.3 db, at a

bandwidth increase by a factor of 6. In order to be of practical value

this example must be related to antennae gains, receiver noise figures,

etc.

The modulation comparison here is based on theoreﬁcal modu-
lation parameters. It now remains to compare these techniques further,
this time on operational and equipment considerations. We will now

proceed to do this.

37




Section 5

SYSTEM COMPARISON

The comparison based on the theoretical channel parameters repre-
sents a partial ordering of the modulation techniques. (In actuality this
choice has already been influenced by physical and practical realizability
considerations.) It is now necessary to compare the modulation techniques
further, using operational and implementation criteria. Four criteria of

this type have been selected:

1) On-board hardware complexity

(23 Facoe nf channal accianment

3) Hardware complexity on the ground
(4) Flexibility

5.1 On-Board Hardware Complexity

It is well known that in a satellite communication system it is desir-
able to reduce the on-board electronics to a minimum. The system reli-
ability is intimately related to this factor.

One of the major advantages of PN systems is that the on-board elec-
tronics takes its simplest form, i.e., 2 hard limiter (as the multiplexer)
or a slow acting AGC. (Frequency translation is, of course, implied.) On
the other hand the competitive conventional system, FMFB, requires linear

multiplexing of the SSB-up signals at the satellite and then composite
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frequency modulation. Thus, whereas the PN signal is made "rugged' at
the ground station sending end, the SSB signal must be made "rugged' in
the satellite. In addition the up-link must be extremely linear until after
the remodulation process takes place. This leads to inefficient utilization
of the up-link. The hard limiting of the PN signal, if used, will result in a
loss in the effective processing gain which may vary from 1 to 2 db.‘ On
the other hand, AGC in the satellite avoids this penalty. The hard limiter
loss is reflected as a loss in the number of channels per megacycle (as
much as 30%) and also a loss in the intrinsic signal-to-noise ratio. AGC
is therefore preferable to hard limiting.

It is well known that bandwidth spreading is an effective modulation
technique for reducing interference in conventional narrow-band systems.
In addition, the PN systems also have an equal ability to reject interfer-
Ciile iT0in Cuilveittivial sysioius. 1hus WS Lype UL specilul spreading
which characterizes PN systems may very well permit the use of extreme-
ly broadbands in satellite links to the advantage of both the PN systems and
conventional links presently in use.

There is very little doubt that the conventional systems using compos-
ite FM will also cause a degree of performance degradation in the modula-
tion process. However, whereas the expected loss due to limiting (if used)
can be predicted quite accurately, the losses in the FMFB systems are not
as accurately predictable.

In summary, the PN multiplexing techniques require substantially
simpler in-the-satellite electronics and are therefore more preferable as

far as this criterion is concerned.
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5.2 Easeof Channel Assignment

A most attractive property of PN systems in particular, and common
channel systems in general, is that switching centers are not required for
channel assignment. The number of quasi-orthogonal addresses is so
large that each channel can be assigned a unique signal address which is
sufficiently different from all other addresses. In general, the system
performance is independent of the particular structure of the signal ad-
dresses in use (for large bandwidth-time products), but depends only on
the number which are being transmitted at any one time. Conventional sys-
tems, however, are '"'signal address'" limited and hence require channel
assignment control either by a monitoring switching center or by some
other discipline.

To prevent system overload in a PN-system it is still essential to
monitor Ui Clullir cavirningiite A todlmigue fur avvumplisiing s sim-
ply but effectively (without the use of a switching center) is described in
1).* /

In summary, PN multiplexing techniques have a decided advantage in
that channel assignment is extremely simple. Such a system will not only
eliminate a switching center which must monitor worldwide traffic but
perhaps more important, the politically sensitive question concerning the
country in which to locate the switching center will be nonexistent. The PN
method of channel assignment is unambiguous and also superior to those
techniques which depend on a certain discipline to which all stations must

adhere.

*
Reference (1) Report pp 4-237
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5.3 Hardware Complexity on the Ground

The hardware complexity required for conventional systems is better
known than that for PN techniques. In addition, empirical data demonstrat-
ing the hardware performance is available in greater abundance than in the
case of PN systems. This experience with hardware is a decided advant-
age for conventional multiplexing and is responsible for the use of known
modulation techniques on the early experimental satellite links.

The competitive PN techniuges require M-ary (higher-order) signal
alphabets. This generally implies extremely complex apparatus. How-
ever, the PN techniuges using pulse rate modulation (PRM) with matched
filter reception can achieve extremely large alphabet sizes in delay (1).*
This modulation process is no more complex than conventional PRM; in
particular, the complexity is for all practical purposes independent of
alphabet size. The signal addressing techniques require a maximal length
sequence generator with associated digital logic circuitry.

The most complex part of the system is the matched filter required
for reception. However, matched filters with, say, 128 taps will suffice;
experimental evidence exists that 64 taps will be just as good. In addition,
to reduce mutual interference, frequency hopping can be used. Thus, al-
though the actual signal address may contain no more than 64 bits, the ef-
fective processing gain against thermal noise and clutter is much greater;
for all practical purposes equal to that obtained with CW pseudo-noise
multiplexing. Because the modulation is PRM, precise synchronization at
the receiver is not required; gating the receiver in the neighborhood of the

expected signal will suffice.

*
Reference (1), pp 4-43
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Completely asynchronous operation can be achieved if threshold de-
tection is used. This type of operation results in a 2 db loss in the matched
filter output signal-to-noise ratio.

Whereas the PN, M-ary systems appear to be extremely complex,
upon close examination it is seen that the technique using PRM with
matched filter reception turns out to be quite reasonable. With the great
progress in integrated circuits, a multi-channel matched filter receiver
will not be expensive.

In summary, the experience available with the use of conventional
receiving techniques as well as practical knowledge as to design and com-
plexity favors these techniques. FMFB is, however, relatively new and all
the answers concerning performance, threshold behavior, tracking errors,
etc., are not available. The PN matched filter techniques require some
laboratory experimentation although the most pressing requirement is
experimentation over real satellite links. l
5.4 Flexihility

The chosen PN techniques (1)* are inherently flexible as far as sys-
tem expansion is concerned. The number of subscribers can be doubled
by adding a single flip-flop to the sequence generator. Similarly, the fre-
quency hopping permits a relatively simple way of expanding the capacity
of the system. In fact, the matched filter system lends itself to a modular

approach to system design and expansion.

%
Reference (1), pp 4-198
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It is simple to trade off message rate for number of active users.
Thus, many more telegraphy channels can be accommodated than voice
channels.

Many matched filter channels can be accommodated at a single re-
ceiver station simply by adding resistance matrixes with relatively simple
poét—detection circuitry. Also, many channels can also be multiplexed at
a terminal. Here, however, a set of PN sequence generators for address-
ing the receiving stations may be required.

The PN system proposed with some modification can be given a jam-
ming and spoofing immunity, thus permitting the assignment of channels
for military use. In addition it is simple to crypto-secure a channel per-
mitting its use for both diplomatic and military purposes. The inherent
privacy of such techniques is well known.

Tinally, tic DIV wodulalul aud Geinoauidior can ve viewed a8 4 MUDEM
which establishes a connection between two terminals much like a wire. At
the transmitter several conventional voice channels can pulse rate modu-
late a signal generator which drives the PN-MODEM or signal address gen-
erator. At the ground station, the matched filter receiver demodulates the
PRM message and the resulting SSB-FDM signal is fed into conventional
telephony equipment.

In the conventional system more subscribers can be accommodated by
adding logic to the automated switching center (if used). This is not dif-
ficult to do. However, the information handling capability of the FMFB

system is complex. This is particularly true since remodulation of the
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received SSB-FDM signal is required in the satellite. It is therefore es-
sential to build into the satellite an FM remodulation capability so as to
accommodate the maximum anticipated expansion. This, however, is not
a particularly flexible situation.

Increasing the number of channels of an FMFB system also requires
an extension of the frequency tracking capabilities of the phase-locked
portion of the receiver. The difficulty with which this can be accomplished
is not clear at this time although it is expected that it increases with the
frequency deviation.

In summary, the ability to increase the number of channels of an
FMFB system is difficult, particularly since it is constrained by the satel-
lite electronics (i.e., remodulation of the composite signal). PN multi-
plexing is therefore a more flexible type of modulation.

.0 BSummary of Operational and Implementation Considerations
Table 5 summarizes the comparison based on operational and imple-

mentation considerations.

TABLE 5. System Complexity

Modulation On-board Hardware Ease of Ground Hard- = Flexi-
Technique Complexity Channel Assign. ware Complexity bility
FMFB Complex Complex Relatively Not
(requires complex flexible
switching
center, or
other disci-
pline)
PSEUDO Very simple Very simple Relatively Very
NOISE complex flexible
44—



In this table summary it is seen that PN multiplexing leads to a more
flexible satellite communication system, and generally less complex, in

terms of on-board electronics.
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Section 6

CONCLUSIONS

Table 4 indicates that for good quality voice FMFB and PN multiplex-
ing using M-ary alphabets are equally efficient in the use of the communi-

cation channel. The breakeven point here is ata T.T./N = 48 db. For

lower quality both systems require approximately the same on-board pow-

er. However, the FM systems use the bandwidth more efficiently. The
utility function of the conventional modulation is from two to three times
better than for the PN system.

In conclusion, when on-board power, operational flexibility, and on-
board electronic simplicity are important factors then PN multiplexing
using pulse-rate modulation (i.e., a digital PPM, M-ary alphabet) is supe-

ior to TMFB., However, where bandwidth is ihe significant facior, then

8]

for T.T./N = 42 db, narrow-band FM is superior.

Finally, these conclusions must be tempered by the fact that there
exists almost no operational and field experience with modulation tech-
niques of this type, particularly for satellite communication systems. The
PN theory developed here is approximate; however, it is expected that the
results which will be obtained in practice will not differ from these by a
sufficient amount so as to eliminate PN multiplexing from consideration.
In short, it is expected that these are valid candidates. Laboratory and

field experiments are necessary to determine their precise performance.
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Section 7

OPERATIONS THAT IMPROVE PERFORMANCE

The problems associated with the transmission of voice signals have
received a considerable amount of attention in the telephone industry.
These investigations have been concerned with the basic statistics of the
single channel voice signal, SSB multiplexed voice channel statistics,
methods to specify voice quality, the parameters to specify in designing
voice transmission systems that provide the required voice quality, and
methods to process voice in anglog and pulse code modulated systems to
enhance system operation. The interest here is mainlv in the last item:
however, some of the other basic items will be discussed briefly.

7.1 Characteristics of a Single Voice Channel—General Discussion

The significant parameters that characterize the voice signal of a
single speaker are the long term mean power, the instantaneous voltage
fluctuation, the activity factor, and the time constants of consonants and
syllables. Each of these parameters will be discussed.

The mean power of a voice signal varies from speaker. to speaker, but,
in addition, in a telephone system the transmission losses of the order of
25 db have been found to exist between a subscriber and the input to a final
junction circuit. The quantity referred to as the volume (in db) has been

used to measure the mean power of speakers in the telephone plant. A



volume indicator was used to measure this quantity, which is defined as

average speech power in milliwatts
1.66

Volume = 10 log10

The probability density function of the volume has been obtained at the
transmitting toll test board, which is the zero transmission level, and has
been found to be approximately normal. The mean volume has been meas~
ured to be -16 db and the standard deviation as 5.8 db for the particular
telephone plant considered. See Table 6.

The volume as defined above is no longer in use, but instead a VU
meter is used to determine the power of the speech signal. The calibra-
tion of the VU meter is performed by applying a 1 kc signal which dissi-
pates 1 mw in 600 Q. With actual speech input the VU meter is read by
taking the average of peak deflections about every 10 seconds after dis-
carding the first few high readings. The volume in db can be expressed in
terms of VU as follows

0db=+6YVU

The mean and the variance of the volume distribution depends upon
talker characteristics and/or equipment improvement as well as other
factors. It has been found in recent measurements that the mean volume,
Vo = -15 VU, and the standard deviation ¢ = 5 db.

The instantaneous speech voltage distribution has been measured for
various fixed volumes and different commercial sets, and it has been

found that the ratio of rectified instantaneous speech voltage to rms voltage
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TABLE 6
( 2)
- 1 (V- VO)
V(db) g % PN oz (¥
70 20

-7.5 0.075
_10.5 0. 15
-12.5 0.28
-15.0 0.43
-17.5 0.6
-20.0 0.74
-22.5 0.86

TABLE 7
E/U = rectified instantaneous speech voltage (‘oo px)dx *
L11d SpToul vullagc J E/U

3.5 .02

9.5 .036

2.0 .062,

1.0 0.12

0.75 0.16

0.5 0.22

0.25 0.36

0.125 0.5

%
P(x) is the density of E/U
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is as noted in Table 7. Attempts have been made to approximate analyti-
cally the distribution of E/U. The approximation due to Davenport uses a
normal distribution for small values of E/U and a negative exponential dis-
tribution for larger values of E/U.

The probability that E/U exceeds 0.125 is given as approximately 0.5.
This is an indication that there is a large concentration of small instanta- -
neous speech signal amplitudes smaller than the rms speech voltage. This
is partly due to the fact that there are pauses in continuous speech between
words and syllables, but the basic problem is that even with speech that is
maintained at constant volume the signal intensity varies considerably from
syllable to syllable as well as within each syllable. The energy of some
consonants is 30 db down in comparison to the stronger vowels. In partic-
ular, it has been found that speech spectrum represented in terms of rms
Suuud pressure level vs [requency has 4 marked peaking between 400 and
800 cps and a steady decline of the sound pressure level at higher frequen-
cies. It will be seen later that the two methods of companding take advan-
tage of these peculiarities of the voice signal.

Some of the more salient characteristics of a single voice signal have
been discussed and now the properties of numerous voice signals multi-
plexed by means of SSB will be considered. The multiplexed voice signals
are merely frequency division multiplexed baseband voice channels located
at the appropriate portion of the spectrum. In designing an amplifier to
process SSB multiplexed voice signals, the statistics of the multiplexed

voice signals are necessary. When a total of N channels are multiplexed
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at any given time, there will only be n active channels. The relation
between the instantaneous rectified peak voltage of the multiplexed
signal as a function of the number of channels N is required. This
information is used to specify the rms power of a test tone, whose
peak power is determined by a level not to be exceeded, a given per-
centage of the time, by the instantaneous power of the multiplexed
voice signal,

In a single voice channel the active time is considered to be the
time during which a conversation is taking place allowing for the pauses
during ordinary speech., Measurements made on a large group of cir-
cuits indicate that during the busiest hour a channel is active about 1/4
of the time. Let P be used to denote the probability that a given channel
is active. In this case, the probability, p(n) that at any given time, n
channels will be active among K channels is given bv the binomial
distribution,

The rms value of the equivalent test tone, when equal volume voice
channels are multiplexed, is obtained by first determining the distri-
bution function of E/U with n, the number of active channels as a parameter.
This distribution is obtained by actually superimposing a ﬁumber of voice
signals at baseband, for it has been found that the frequency separation of
the voice channel does not materially affect the distribution of the multi-
plexed voice signals. E is the rectified instantaneous voltage of a multiple
of baseband voice signals, and U is the rms voltage of a single voice chan-
nel. The distribution of E/U is approximately normal when n is 64. From
the cumulative distribution of E/U, it is possible to specify the value of
E/U that is exceeded with a specific probability. The overload level so
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determined corresponding to the specified probability, or the overload
expectation €, is one of the critical design parameters for SSB multiplexed
voice signal systems. The overload level in db above the rms voltage of

a single voice signal can be easily obtained as a function of the number of
active channels, n, with the overload expectation, ¢ , as a parameter.

By considering progressively smaller values of € it is possible to
obtain a limiting curve of the overload level in db above the single rms
speech voltage plotted as a function of the number of active channels, n.
The multi-channel peak factor is obtained by converting the limiting value
of the overload level to instantaneous speech voltage level in db above the
rms speech voltage of n channels. This can be readily done by dividing
the limiting value of each E/U corresponding to each n by vn. The multi-
channel peak factor for n active channels reaches a constant value of
13.2 db at about n = 100.

The multi-channel peak factor enables the designer to obtain the larg-
est instantaneous peak voltage excursion of multi-channel voice gignals
from the rms value. From this peak factor one can obtain the peak in-
stantaneous power of multi-channel voice signals above the average power.
The latter can be expressed as n, number of active channels, times the
average power of the single voice channel. Combining the information
derived from the multi-channel peak factor and the average power of the
voice signals, one can determine the peak instantaneous power of the multi-
channel voice signals as a function of the number of active channels, n.

This relation can be expressed in terms of K, the total number of voice
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channels, by specifying p(n) to be 0.99, for example. The latter relation
between instantaneous peak power of multi-channel voice signals plotted
as a function of K will be called the instantaneous load capacity.

The rms power of the test tone is determined by subtracting 3 db
from the instantaneous peak load capacity. It has been found convenient in
the design of multi-channel voice systems to specify the design parameter
in terms of the test tone rather than the instantaneous load capacity.

The case of the equal volume channels has been considered, and a sim-
ilar relation for the unequal volume multi-channel system is handled at the
expense of further analytical sophistication. |
7.2 Companding and Compression Techniques

Some of the more important characteristics of the single and multi-
channel voice signals have been discussed. Methods have been devised to
improve the performance of voice communications systems; and in all
cases the improvement is obtained by operating on some characteristic of

the voice signal prior to transmission and performing the inverse opera-
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tion a KiiOwil are pre-emphasis and voice encoding
schemes in which the speech spectrum at the high frequency portion is of
importance. As previously discussed, the maximum intensity occurs be-
tween 400 and 800 cps, so in the case of pre-emphasis the intensity level
of the higher frequencies is increased resulting in an improvement de-
pending upon the degree of pre-emphasis and the signal-to-noise ratio. In

the case of digital encoding of voice signals a method has been devised to

sample the lower and upper portion of the voice spectrum separately and
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then digitize them independently. This results in pulse rates of 20,000 to
40,000 bits per second giving rise to voice quality equivalent to 128 levels
sampled 8000 times a second.

The method of voice system improvement of special interest here is
companding. Companders operate on the variation of the speech signal in-
tensity and rate of change. Speech intensity varies from syllable to syl-
lable and even within syllables. In terms of energy, there are consonants
that have 30 db less energy than the strong vowels, even under constant
volume conditions. In a practical system, the volume of the speakers vary.
To prevent the transmitter from overloading and to improve the signal-to-
noise ratio of the weak speakers, the volume of each voice channel must be
adjusted. In the early days of radio telephone, the technical operators used
a volume meter to monitor and adjust the speaker volumes for optimum
‘ausmissivi. Auwever, Lis did 0o provide a sausiactory means ol com-
pensation for the intensity fluctuations within words.

The theory of companders, which consist of a compressor and an ex-
pander, is well known. Briefly, the compander crossover level is the av-
erage speech power in dbm zero at which the compressor introduces no
compression. Thus, if the average speech power exceeds the crossover
level it will be attenuated, proportional to the speech power. Yet, if the
average speech power is less than the crossover level, the reverse is true.

Forward and backward control methods are used to generate the con-
trol information. In the case of the forward method the control voltage is

approximately proportional to the envelope of the speech energy and is
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obtained from the input to the compressor preceding the circuit that pro-
vides the variable loss in the compressor. The control voltage is generated
by first passing the speech signal into a nonlinear circuit whose output is
some root of the input signal. The output of the nonlinear circuit is the
input to a rectifier whose output is then low pass filtered with the appro-
priate cutoff frequency. In the case of backward control, the variable loss
circuit is used to provide the nonlinear rooting operation. In either case,
the compression ratio is defined as the ratio of the compressor output in-
crement to the input increment in db.

The expander, located at the receiver, operates on the demodulated
signal in exactly the inverse manner to the compressor. It is therefore
reasonable to define an expansion ratio which is the inverse of the com-
pression ratio. If a compressor is placed in tandem with an expander,
ideally the final output will be identical to the input.

The syllabic compander is designed to have an attack time of 3 to 5

illigseconds and a recovery time of 30 to 50 milliseconds, It is known

that vowel sounds seldom build up to their peak intensity in less than 1 or

2 milliseconds, so an attack time of 3 milliseconds will suppress the syl-
labic peaks. The release time is sufficient to extend over the duration of
the syllable. The instantaneous speech voltages that fluctuate more rapidly
than the attack time will not be acted upon by the compressor. It is not
reasonable to extend the release time much beyond the duration of 30 to 50
milliseconds, for the expander will continue to operate at low loss after the
speech burst has ceased. This condition results in the listener hearing the

noise after each rise in speech intensity.
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The noise improvement of a compander is the signal-to-noise improve-
ment at the output achieved by the instantaneous losses introduced by the
expander. L'he variable loss of the expander is controlled by the average
compressed speech power, and varies according to whether the compressed
signal represents a pause in speech or not. During a speech pause the
pompressor can be assumed to be in steady state, so the compressed sig-
nal received at the expander consists of channel noise only, which is aver-
aged by the expander control circuitry to determine the loss. The expander
time constant is short, and the noise suppression is effective, resulting in
noise improvements of the order of 25 db.

For weak consonants the compressor's action which boosts the signal
level improves the signal-to-noise ratio in the channel resulting in an en-
hanced noise improvement. In the case of a vowel with high signal intens-
Y, Vil SPeeiii migual luashs LUE UULSE Aaud Lie 1uise impfovement 1S OI the
order of a few db's at most.

Syllabic companders have been found to be effective in reducing the
multi-channel peak factor and in the reduction of the multi-channel peak
load capacity in systems with a small or medium number of channels. The
companding of each channel becomes less effective as the number of chan-
nels increase in terms of multi-channel peak load reduction. For example,
Bell System's N1 carrier system incorporates companders. In the case of
the compressor a backward control system is used and the expander is a
forward control type. The crossover level is at 5 dom, and 20 to 28 db

noise advantages have been derived.
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The companding technique, which is of considerably more interest to
digital communication techniques, is the method in which the variable gains
of the compressor and expander are changed instantaneously. With instan-
taneous. companding, nonlinear coding of the speech signal is achieved.
This coding method is a PCM technique in which nonuniform quantization is
provided for small signal amplitudes in comparison to the large amplitudes,
resulting in an overall improvement of speech quality in the channel. The
nonlinear encoding of speech samples can be conveniently achieved by an
instantaneous compander preceding a linear analog-to-digital converter.

The distribution of the talker volume at the zero transmission level,
and the instantaneous voltage distribution of speech are taken into consid-
eration in determining the entire range of instantaneous speech voltage
samples that require encoding. In terms of speaker volume distribution,
whnicn nas a stanaard deviation ot approximately 5.8 db, + 13 db about the
average volume will include roughly 98% o the speakers.

The upper clipping level of the strong speaker and the low clipping
level of the weak speaker determines the range of the instantaneous speech
voltage samples. The upper clipping level can be taken 13 db above the
mean power of the strong speaker and maybe even less. The low level
clipping is determined by specifying the mean square value of the signal to
be 23 db above the power of a unit of quantization. This results in 62 db of
power spread, and in terms of instantaneous voltage, a spread of 2520.
Using uniform quantizing units, 11 bits is required to provide 2048 levels.
Using nonlinear transformations, such as logarithmic, hyperbolic or expo-
nential mappings, one can achieve similar signal-to-quantizing noise ratios

with only 7 bits.



Section 8

STRONG SIGNAL INTERFERENCE

An important problem in multiple access is the ability to
accommodate strong and weak stations through a common peak-
power limited repeater satellite. It is essential that the satellite
pox;/er be shared equally among the messages. Thus a large
station transmitting ten messages should take no more than ten
times the power of a small station which sends only one message.

(We assume that the message rates are the same.) The quality

of the received signal is, however, dependent on the down link
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WAL L AW LOUL LD VLW D Wi WA \WiE: & W Vaiig W ULk LLLLe ALdWIANI W g W M VA VAT LA

which has a large antenna, or one which has a better receiver
nocise figure, will be able to receive signals of supericr quality
than a station which has inferior receiving characteristics,

There are a number of ways which can be used to
multiplex strong and weak stations so that each receives a fair
share of power, all of which require some control of the signal
in the up-link.

Among the common techniques are ground station power

control, time division multiplexing using net synchronization



(TDM), and pulsed pseudo-noise signal transmission with time
and frequency hopping.

Ground station power control may be an easy way of
maintaining equa.l power at the satellite, Its effectiveness depends
upon:

. (1). Accuracy of control of transmitter output power;

(2). Antenna tracking accuracy;

(3). Range accuracy.

The transmitter output power can be controlled by a simple
feedback loop. Such loops are not difficult to build for slow
varying power fluctuations (i.e.. less than 2 +o0 8 o=z )V A Sidcy
bandwidth loop might present design difficulties. Using such a
feedback loop, one should be able to control the power tc within
approximately 1 db.

The power fluxuations due to variations in antenna gain
with pointing error will depend on the beamwidth and tracking
accuracy of the antenna, A power fluctuation of approximately

1 db is a reasonable estimate for antennas of the type used for

synchronous satellite operation.
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Given sufficient time, range accuracy to a synchronous
satellite can be determined to within a few feet. For this reason,
power fluctuations due to range uncertainty will be assumed
negligible in comparison to the previously discussed errors.

Therefore, using ground station power control, a variation of
2 db seems easily obtainable. With additional complexity in the
feeaback loop and the antenna tracking system, power variations of
considerably less than 2 db are possible.

Time Division Multiplexing (TDM) solves the power control
problem by essentially eliminating it. Here, each station is
assigned a time slot in which it transmits with no interference
from other stations. (21} The problem here is ultimately one of
establishing accurate timing. This could be accomplished by a
satellite time standard that transmits one or more timing bursts
during each frame. Sinceonly relative time is needed, the time
accuracy is determined by the range uncertainties with respect to
the various stations as well as variations in the velocity of
propagation due to atmospheric effects. After sufficient measuring,
range uncertainties of only a few meters can be obtained. A 3 meter rms

range error means of course an rms time error of . 01 sec.
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Making é. standard correction for propagation effects will result
in an rms timing error of approximately 0. 03‘ sec, at 2 gc. (19)
This number can be reduced by the use of more sophisticated
cofrection techniques.

For the purpose of this discussion we will assume that a
hard limiter is used in the satellite. Pulsed pseudo-noise trans -
mission gives the weak station a way of avoiding the suppression
effects of the strong one.

As an example, assume that (K-1) strong stations and one
weak station each of duty factor d are transmitting signals. Then
(l-d)K-1 is the probability that the (K-1) strong stations will be
off during the interval that the small station uses the satellite.
During this interval the transmitted signal in the down link
is Pg and the thermal noise power is 2WN,. The probability that
a very strong station captures the limiter when the small signal

is present is (1-(1-d)K-1

). Here, clutter is generated of power
PS and thermal noise is added at the receiver of power ZWNO;

the received signal power component is assumed to be zero.

From these results a lower bound on the performance in the presence

of strong signals can be obtained.
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From an error probability point of view, this type of
calculation would indicate that performance is necessarily poor
unless the duty factor is chosen to be very small. Such a duty
factor, however, would lead to extremely inefficient utilization of
bandwidth and on-board power. The probability of error by itself
is, however, a poor indication of voice intelligibility particularly
when burst errors are concerned. Interesting results on the
effects of pex.'iodic burst interference on voice recogﬁtion are
discussed in the next paragraph,

In choosing a modulation technique for a voice communication
system to operate in an asynchronous multiple access environment,
the results of articulation tests performed under certain inter-
fering conditions are of interest. The experiments were conducted
under varying probabilities that an actual interference would
occur. Assuming the interference to be periodic, articulation
tests were made for various interference rates, The results show
that for a specified probability of interference and voice signal-
to-noise ratio, there is an interference rate that maximizes the

articulation test scores.
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When the noise time function, or the probability of inter-

ference, is 0, 2 for various voice signal-to-noise ratios during

the interference, the articulation test scores of Miller and

Licklider are:

Interference Rate/S/N

1000 cps
100 cps
10 cps

1 cps

-18db -9db 0db +9db
15 57 82 92
55 82 92 94
96 98 99 98
86 92 96 97

For a probability of interference of 0.5, the articulation test

scores decline as shown below:

Interference Rate/S/N

1000 cps
100 cps
10 cps

1 cps

-18db ~9db 0db +9db
0 24 63 83
0 39 15 86
71 82 93 95
53 70 84 92

The articulation test score method is important in designing

communication systems.

However, this may not reflect

speaker recognition and other qualities essential to a good voice

channel,
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Section 9

RECOMMENDATIONS

In consonance with the conclusions reached in Section 6, the important
recommendation to be made is that an experimental program over a SYNCOM
channel be initiated as a follow-on to this contract. A minimum of additional
theoretical and systems analysis will be performed in support of this proposed
program.

9.1 Experimentation

IBM feels that an experimental program is an integral part of any exten-
sion of the work done under this contract. Although this study has demonstrated
the theoretical feasibility of PN multiplexing as applied to a random-access
SYNCOM satellite system, the practical feasibility has not been demonstrated.
Considerablie experimental work must be performed beiore our knowledge of

of conventional

11}

PN multiplexing techniques is comparable to our understandin
modulation techniques.

IBM feels that this deficiency can be rectified by a program employing,
primarily, satellite experimentation combined with some laboratory work and
computer simulation.

Some experiments using CW, pseudo-noise transmission over a repeater

satellite have been reported,* although results have not been reported. IBM

recommends that experiments over SYNCOM be initiated which use Pulsed

*IEEE International Meeting, March 1964, N. Y., N. Y.



Pseudo-Noise Multiplexing and Matched Filter Reception. The results of
this study show that these techniques are attractive both from on-board power

cquirements as well as from operation

al and implementation considerations.
These experiments will also demonstrate the usefulness of wide deviation
pulse rate modulation (or digital pulse-position modulation) in multiple access
satellite communications. This form of modulation has received little atten-
tion in satellite applications because, in its conventional form, it requires low
duty factor pulsed signals which are not compatible with a peak-power limited
repeater. However, this type of modulation, when incorporated with pulsed PN
multiplexing and matched filter reception, loses its deficiency and becomes
extremely attractive as an efficient way of exchanging bandwidth for on-board
power.

Most studies on optimum modulation techniques have neglected callup
lagic and callnn nracedures. We have included callup logic in this study and
have shown a relatively simple PN callup technique using a maximal length
sequence generator and a matched filter receiver. This technique is applicable
to conventional and PN multiplexing and hence is of general interest. The
satellite experiments should therefore include this recommended callup pro-
cedure and test its usefulness. In particular, it is of interest to slow the PN
bit rate during callup relative to that used during message transmission in
order to reduce the chances of false calling. This mode of operation will also
demonstrate the feasibility of accommodating data and voice on a common
channel. The reduced data rate will reduce the error probability as required,

when data rather than voice is the message.




T Wy e ETTTTTUTTTNETTTUTs—————

The matched filter receiver permits asynchronous reception of the
voice message. In many applications this is a desirable mode of operation,
particularly where small mobile ground stations are of interest. Experi-
ments should therefore demonstrate this type of operation.

The matched filter receiving system is compatible with frequency
hopping. If bandwidth is available this mode of operation reduces clutter
and in addition permits the multiplexing of strong and weak stations. The
use of pulsed pseudo noise signals also helps to reduce the degradation
caused by a strong signal in the up-link. Measurements of this degradation
in the voice signal should therefore be made with the presence of a hard
limiter and also with AGC. Parts of this measurement can be made over
a SYNCOM link and parts can be made in the laboratory. It is expected that
for voice, subjective tests will be most useful.

In all of these experiments, it is recommended that the interfering
multiplexing signals which will be generated and transmitted should consist
of the PN signals that would ultimately be used. This can be accomplished
simply and cheaply.

It is of value to multip
signals at the satellite repeater. This measurement will show the interfer-
ence effect of PN transmissions on conventional modulation systems as well
as conventional modulation on the PN systems. These measurements should
serve to alleviate any unfounded fears that PN modulation will disrupt con-
ventional communications.

In summary, IBM recommends that NASA pursue a satellite experi-
mental program using pulsed PN transmission and matched filter reception.

This program will give answers to the following questions.

-66-



® The degree of agreement between the theory of PN multiplexing (devel-
oped during this program) and experimental results.
® The efficiency with which pulsed PN transmissions and matched filter

reception of pulse rate modulaled signals use a satellite repeater (equal power

multiplexing is assumed).

° The distortion introduced in a voice channel by strong signal interference

when pulsed PN multiplexing is used combined with rapid frequency hopping (i.e.,
burst noise distortion on voice signals).

® The effect of a hard limited and AGC on pulsed PN multiplexing using
frequency hopping.

° The effect of slowing the PN signaling for data transmission and multi-
plexing with high-speed PN voice modulated signals.

L Reliability of PN callup procedure.

L Degree of interference of PN signals with conventional systems and
vice versa.

° The effect of AM to PM conversion, doppler, etc., on pulsed PN signals
using matched filter reception.

Attempts should be made to utilize any existing experimental data derived
from SYNCOM experiments. PN modulation is compatible with existing ground
stations and hence serious interface problems are not anticipated.

9.2 Systems Analysis

The results of the study are generally applicable to a variety of communi-
cations systems, for the modulation comparisons were performed with few re-
strictions on the communications system parameters and requirements. The
system analysis and design required in specifying the interface equipment be-
tween the SYNCOM system and the matched filter equipment will use the basic
relationships generated in this study.

—67-



198 7 6 5

210

n
m/l
// i} )
N B
// 2
N m
N = 3
a
M -
" ~ ~
//}, L ® & M g
N /, 8 3%
- N gz
o = )
~_ /// M ~
o 6 3
/ // // ‘n e .
o
/1/ / / // nw. ~
T — T~ N
e — /, ll:.nl.l S N
— [ ——— l/ — ./
—— [ —t— S — N«
O

1

(
1

100

“. A'




L U Wy W W e .y T T .. .

Intrinsic Signal-to-Noise Ratio {clutter free) in db, (Ps/Nk) o

35

30

N
[$]

N
o

(3]

o

0 2 4 é 8 10 12

Number of Decisions/Voice Sample (q)
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FILTER OUTPUT SIGNAL-TO-NOISE RATIO
' 77




NOLLVTAQOW J0 XIANI WA SA OLLVY ISION-OL-TVNDIS TOHSHYHI WJI ‘11 T¥NOHIA

n ‘uoiyo|npop 4o xepu| W 4
201 ol

0°l
ol

/

o

X

0
-

e

U ‘qp uy oioy sstoN-0)~|oubls pjoysaiy) W4

o]
—

"
z

0c

78




0z

81

(9) 9j24onBayy /sjauupy)) jo 1aquiny
9t vl Zl 01 8

I ] ' | T

ATIOADVOIW/STENN vHD A0 ¥AdNNN
SA OILVY ISION-OL-T7NDIS DISNIY INI

21 3d9NO1LA

-l

79

(N/S4) ap u1 ‘onpy ssioN-04- UG Disuruy

et el ol it .. Ak 0. Anf. S e S San s ane



T Zz| S

T VN TN M tewE EEW Y "EE T ST T s L_____n

Appendix A

ANALYSIS OF PN-MULTIPLEXING SYSTEMS .
USING DIGITAL SIGNALING TECHNIQUES

T 5 hao
FN

+ o £ +hs ~ —
15 wnd purpogc Ciu

this appendix to develop the necessary
relationships to allow PN-multiplexing systems using quantized

sample data (i.e., digital) modulation techniques to be compared to

a reference system. The reference system will be the single sideband-
frequency division multiplexed system (SSB-FDM). Three reasons for

the selection of the SSB-FDM system as a reference are (1) It makes

the most efficient use of channel bandwidth and therefore maximizes

1D\ Ta T~ Lo - L I IR
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for the comparison of conventional modulation techniques; (3) It is the

best understood voice communications system in existence,

Sections A. 1l and A.2 review the concepts of audio signal-to-noise
ratio and the test tone-to-noise ratio (T.T./N) respectively as they
relate to this problem with adequate references to the literature for more
detailed discussions. Relationships are obtained for the audio signal-to-
noise ratio, and (T.T./N) resulting in an expression for (T.T./N) as a
function of the peak square signal to mean square noise ( Y\ pZ) at the
output of the detector. Section A.3 makes the final step and relates
(T.T./N) to the SSB-FDM reference system. The final section, A.4,
derives the final expressions used for computing the graphical data neces-
sary for the modulation techniques comparisons.

A-1
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A.1l Audio Signal-to-Noise Ratio

In digital voice communications systems, in which the voice
samples are pulse code modulated, there are two causes of audio
distortion: decision error noise and quantization noise. An
important measure of system performance is the ratio of mean
square signal to mean square error. (This is the fidelity criterion
used for analog transmission.) If S, is the output at the nth sample
time in the absence of noise and Op is the actual nth output sample,
the error in the nth sample will be €nh =Sy - On. The mean

square signal to mean square error ratio will then become,

im N S2
S2 - N-o n§ 1 0 (A-1)
—2
€ lim N 2
z £

This measure of audio quality will be defined as the audio signal-to-
noise ratio, S/N. |

In digital voice transmission systems such as described here,
the audio signal is sampled and quantized into one of M values.

The M values are then transmitted as one of M possible

A-2




wé.veforms. At the receiver, the waveforms are detected and
the audio signal is retrieved by appropriate low pass filtering.
The audio signal-to-noise ratio will depend upon the number
of quantization levels, M , and the probability of incorrect
detection, & ., This probability will in turn depend upon the
signal-to-total-noise ratio at the output of the correlation
receiver and on the method of detection. (The noise here consists
of thermal noise plus clutter.)
First, an expression for S/N as a function of M and ¢
will be given. Although the method of detection may drastically

change the value of & , for all practical purposes the relation-

ship for audio signal-to-noise remains unchanged.

[

A mathematically convenient model for the statistics of the
analog source is that the amplitude probability density is flat.
This is not restrictive and quite general since an arbitrarily
distributed random variable can always be mapped (by means of
a nonlinear amplitude transformation which is the inverse of the

cumulative distribution) into one which has a flat density function.

Furthermore, the original random variable can be recovered by
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the inverse transformation. Even more important, the fidelity‘
criterion which will be used is quite insensitive to the probability
. . ) ) (13)
distribution of the random variable .
In Reference 13 it is shown that the audio output signal-to-
noise ratio has the functional form,

(§)= M2- 1 (A-2)

N 2
1+ 40t 5(M*-1)

where M is the number of levels which partition the range (-A, A)
aua R p 18 the bit error rate. It is now essential to calculate
the bit error probability c(B for various methods of trans-

mission. In the M-ary case it is shown (13) that,

M
e VS e (&-3)

where ¢ is the M-ary decision probability of error. From

equations (A-2) and (A-3),

(8)- (2-1)

N/7 1+ 2M(M+1)ex
~ ! for M>>1 A-4
2dh + M-2 (A-4)



When bit-by-bit decision is used (i.e., as in conventional

PCM) then for high quality voice we have from equation (A-2)

(%)= m i M>>1 (A-5)

where o« is the bit decision error.

In this report, we also consider multiple word decisions,
which will also result in some small modification of the expression
for -EI . For large values of M , i.e., for good voice quality,
the factors which multiply the error probability o( will influence
the fidelity expression (%) only slightly. Thus for the purpose
of this study we use equation (A-4) for all the decision procedures
studied with the appropriate value of oX recognizing that for
M > > 1 the discrepancy between the exact expression and the
one used is of little practical significance.

From equation (A-4) it can be seen that the audio signal-to-
noise ratio depends upon decision errors (i.e., the 2 oA term)

and quantization errors (i.e., the 1/Mm2

term) as mentioned in
the introduction to this appendix.

Before introducing the concept of (T. T. /N) it will be useful

to express S/N as given in equation (A-4) as a function of Yl 2



Ty L Saaas "

the correlation receiver average signal-to-noise ratio output.
The probability of error o is related to the signal-to-noise

at the output of a matched filter with greatest-of decision by the

equation,

@ M-1
1 - =f y exP{- %(y2 +Y(2)} Lyn|t- exp{- %YZ} dy
0 .

(A-6)
This equation assumes an orthogonal signal alphabet and envelope

detection. Under the assumption of large signal-to-noise ratio ,

equation (A-6) becomes (11), (18) ,

M-1

>
[~

X = exp | - in\zl | (A-T)
L I

J

(This equation is a very good upper bound on the phase coherent
case as wellbwhenM > > 1.) Substitution of equation (A-7) into

equation (A-4) and expressing the results in decibels yields,

- 2_ e 12
( -SI-\-I) o 2.2M"-10 loglo(M 1)-10 loglo{l +[ Q(M)/(M-I)J exp( 2 )

(A-8)
where Q(M) represents the quantization noise-to-signal ratio,
QM) = exp,(-my) = 2™ (A-9)

mb

total number of bits in the sample waveform
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It is now necessary to extend the results to the case where
a decision is made on subparts of the sample waveform. One can
define a quantity, q, equal to the number of decisions per sample
waveform. If m bits are included in each decision, then the
total number of bits will be,
m, = mq (A-10)
For a sampling period Tg =1/k2 W )and a sub-waveform time

duration T ,

. (A-11)
Therefore, . 2Wo q
qQ = W . (A-IZ)

Both Q(M) and Y\Z are functions of q . For the quantization

noise, it can be easily shown that,

-2m, - 2 -2
QM) = 2 T4y =[r4m] 4. Mmee (A-13)

For the case of word decisions, 9 =1 and equation (A-13) reduces

to the usual expression for QM) = 1 The relationship of

M
YL 2 to q will be discussed in Section A. 3.

The next section will briefly discuss the concepts of test tone-

to-noise and how it relates to voice communications comparisons,
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A.2 Test Tone-to-Noise Ratio

In order to compare the various modulation methods for
a multiple access system, it is convenient to express the audio
signal-to-noise ratio in terms of the test tone-to-noise ratio,
The channel test tone is a 1 kc sinusoidal tone which has an
average power of 1 mw at the toll switchboard, or the 0 dbm 0%
point. The test tone is conveniently used as a voice channel
reference signal.

The average power of the signal in the audio channel can
be éxpressed in terms of the test tone as

S, =(T.T.). X,

where T.T. denotes the test tone defined above at 0 dbm 0.

The value of X(b) at the 0 dbm 0 point is determined by the
voice signal characteristics and the required voice quality. It
has been found that in an audio channel, which is one of many

voice channels multiplexed in a single sideband manner, a 1%

3*

0 db with respect to a milliwatt at the zero relative level point
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of the time overload does not impair the voice quality. For the
unequal speaker volume case using this criteria of 1% permissible
overload, the instantaneous load capacity of a single voice channel
in terms of the rms power of a test tone should be 9.5 dbm at the
zero relative point. This determines the value of X in db to be
9.5 db.

Hence,

(T.NT.> . o (_1%) P 9.5 (A-14)

In the actual telephone voice channel it is reasonable to assume
(15)
that a 3.1 kc bandwidth is used and that psophometric

weighting of the noise spectrum provides a (__'_I_‘;I‘_) improve-

N /db
ment of 3,5 db. Hence we have

(T-T.\ _ (8) - 6.0 (A-15)
\' N Ja N/ g,

Therefore, from equation (A-8)

T.T.
( N )db =2,2 le ..1010g10 (M-1) -101og10{1 + [Q(M)/(M-l)] exp (7(2/2)} 6

(A-16)




A.3 { T.T. \ Referred to An SSB-FDM, K Channel System
\ N/

To derive an expression for the ( T

L. in terms of the
N

reference K channel SSB-FDM system, one must first derive

an expression for the peak signal power-to-mean square noise
ratio at the output of the matched filter, Ylpz , in terms of the
signal parameters at the input to the matched filter receiver.
(This is performed in detail in the Addendum at the end of the
appendixes section.) From this, one can derive an expression

for Ylpz as a function of the equivalent signal-to-noise ratio

PS in a K channel SSB-FDM system, thereby allowing one
Ng

to relate [_T.T. ) -to the reference system.

' N

A brief summary of the clutter calculation in the Addendum

is presented here for completeness.

The nth signal waveform can be expressed as

z_(t) = A, exp{ jfeot + ¢n(t)]} 0< t< T

( Z(t) is the analytic signal representation)
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T = duration of waveform (i.e., the integration time)

Apn = waveform amplitude
e = carrier frequency
¢n(t) = pseudo-random phase modulation

The received signal will also include clutter signals to which

the intended receiver is not matched as well as thermal noise.

Hence,
zR(t) =Z_(t) + Z_(t) + n(t) , (A-18)
where,
Zc(t) = clutter signal
n(t) = complex white gaussian process of spectral density

1\] watts/ eng
CPS.

g WELLS i

The clutter signal will be of the form

z (t) = Ep A, exp{j [wolt = F )4 Qp(t-’T‘p)}} , 0<t< T
p#n (A-19)

Tp = relative time shift of the pth clutter signal with respect

to the desired one.

o>
1

rd

oy
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To derive the desired expression for the correlator output
signal-to-noise ratio, it will be necessary to assume that the
clutter signals have a white gaussian distribution. (This assumption
is not required in the Addendum.) Then one can define the total

noise power density as

Not =N + N

ocC o
where
Noc = the noise power density of the clutter signals (watts/cps)
Ny = the thermal noise power density (watts/cps)

One can now use the well known expression for the output signal-

gaussian noise (14).
z 2E
= (A-20)
e Not
Assuming the RF bandwidth to be 2 W,
p,° N
N
where N =
ot 2W
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Assume that K signals are being received by the matched

filter each . of which has the same power Py . Then the clutter

power will be (K-1)Pj and E = Py T , is the energy per waveform.

Therefore

2 _AWIPk (A-22a)
P 2N, W + (K-1)Pg

where 2N, W is the thermal noise power and (K-I)Pk is the total

clutter noise power. Dividing numerator and denominator by

2WPL K, we have,

2T |
2 _ = K 1 (A -22b)
y(P 0 4 =, 1
KP "\*"KI 5w
K
Since the total power received is P = K Py where P is the

satellite power referred to the ground receiver,
2T

2 = K (A-ZZC)
e N BN
~2 +(1 -
P

) 2W

2] ke

This expression is valid for all correlation receivers. The

detection procedure will be some function of this quantity.

A-13
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If d is the duty factor of the pulsed pseudo-noise signals
hen the total downlink average power is

dKP, =P . (A-23)

By using the same reasoning used to obtain equation (A-22) we have

" 2 _ 4WT Py (A -24a)
P

2N, W + d(K-1)Py

From equation (A=23) and (A~243 , we have

2T 2Tg
Yl [ dK = K
P No 11 N, 1, T
3 0 R3w - glaw
(A -24b)
where Tg is the sampling period, and T = dTg . Egquation

(A-24b) shows that the pnleed neendo-ncize signals belave much
like a CW pseudo-noise signal as far as signal-to-noise ratio is
concerned. This is true provided the average clutter approximates
CW clutter.

This behavior can be understood from the following physical
argument. If Tg is the sampling rate and pulsed pseudo-noise
is used of duration dTg , the energy per decision is apparently

reduced. However, on the average, the percentage number of

A-14
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signals that use the satellite repeater during the same time

interval a2 t}

a¢ the desired signal is also d and therefore the power
per signal in the downlink is for all practical purposes P/(dK)
where dK is the average number of signals that are active. The

energy per decision is, simply,E = dT, P/(dK) = (PTg) /K.

S
It is expected that the deviation from this ideal will be very small
when d > 10% and will increase somewhat when d < 10%,
although a sharp decrease is not expected as long as the correlator

output error probability law holds.

By manipulating equation (A-24b) we obtain the form

= /2 = = P (A -25)
1 " ¥ Ion1m 1 N, ' '
T 2wt No
where
N = K fp(1=1,'1<)+ﬁ’ - K(N. / (A-26)
t T 2 W of = RNy /T)
and
Nig = N+ N, = clutter energy + thermal noise energy

Equation (A-26) is equivalent to a system using a narrow band signal

Pulse of duration T , and power P and of additive thermal noise

A-15
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power (KNto/T) in the equivalent narrow band channel. We can
now replace P by Pg, the equivalent full load sinusoid power.
Therefore

y 2

If the signals have an arbitrary duty (or activity) factor d < 1, then

,12 = Ps/(dNt) (A -28)

In order to obtain this expression in terms of the reference SSB-FDM

voice system, we write

W =(1/8)(Pg/Ny) (Ng/Ny) (A-29)
where,

Ng = KN W, , (A -30)

Wy = 4,000 cps

Equation (A-30) is the noise power ina K channel conventional

voice system. Then from equations (A-26) and (A-30), we have

Ny i Nk 2 WT ) 2W W_T
N, -~ K[Pg(l-1/K) + 2 WN_] P
t S ° -ﬁ§(1-1/K)+zw
° (A-31)
= Yo” (A-32)
—1-3—51 ( Vo )(K-1)+ 1
Nk \ 2w
A-16



From equations (A-29) and (A-32) we have

' Pg w,T
2 _ ) (A-33)
U= dN, / Pg , W,
—_— K-1) +1
Ng <2W >(

Substituting equation (A-33) into equation {A-16, gives

_ P_5-> WoT 10 1 1
(T'T'/N)tml_z'z(dNK s .X.VE)(K Bt ot
NK( ATN A
W_ T
| aM) l(PS\P = '}6
K

~

fA _24)
\4> =

When 2W —» oo , we obtain the thermal noise limited case,

P
T.T./N) =z.z(_i) ) .
( - ANy W, T - 10 loglo(M 1)

P
. Q(M) ( S ]
-10 log, o [Ll + TMoT) O Z—dNK W, T|-6
(A -35)
This is the ideal performance which would be obtained if the

signals had zero mutual interference.

TEEEN T NS W W v

A-17




Substituting equations (A-12) and (A-13) into equation (A-34) gives

Pg

ANy ) Pg
(

1

(T.T./N) = 2.2 ( -10 loglo(M-l)

N_K(:Vw ) (x- 1)+1)2q

M-24

01 1 ——-—-—[ 1/.2(PS ! pb
=10 logyg § 1+ Ty [exP N/ 1Ps  Wo -
[’ﬁ_ 2W 17

K

(A-36)
When W o

= S )—1 101 M-1)
(T.T./N)Oo— 2.2\ aNg J2q - 10 log oM~

M=-29

-10log,n |1 + -=—— exp 1/2-—- - )'6
10 (M-T) dNy 2q /

e d

(A-37)

———— 1Y

A - - -1
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noise. Then,

l
' (T.T./N) = 2.2 (d%‘f;_{) 1/29) - 10 log, , (M-1) - 6 (A-38)

When d = 1/2, m = 1, M = 2

P

—>V)1/q-6 (A-39)
Nk
Equation (A-39) is the result for on-off binary transmission using

(T.T./N) = z.z(

bit-by-bit decision where q is the number of bits per sampgle.

A-18
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When q = 1, M = 2™ >> 1, we obtain (T.T./N) for the

M-ary alphabet, for example, one word decision per sample.

Here,
Pg
T.T./N) =1.1(-— -3m-6 A-40
( ) dNK) m ( )

( m = number of message bits per voice sample. )

A-19
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A.4 (T.T./N) At the "Knee' of Input-Output Characteristic
In order to obtain (T. T. /N) at the knee we simply equate the

quantization and thermal noise in equation (A-36). Then

-Zq PS 1
M
. exp{ 1/2 ( W) TPw =1
M-1) i WNg/ (28 o (x1y+1 2q
N, 2w

(A-41)
Substituting equation (A-41) back into equation (A-36), gives the

expression for the test tone-to-total noise ratio at the knee,

In the thermal noise limited case

(P58 o 4ga

aloo M+ log (M-l)l (A -43)

i.—"x o 7

(Note, the above is not in db.)
Equation (A-42) is graphed in Figure 1 as a function of q with
m = log;, M as a parameter. Equation (A-43) is graphed in

Figure 2 as a function of q with m as a parameter. The

NKg /0
in db is graphed in Figure 3. For a given parameter m the

relationship of (T. T./N) oo ndbas a function of ( Ps )

pair ,{(T.T. Ny ,( ..P_S._.)

} are obtained for the same value
Nk ‘oo

A-20
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of uld be recognized

q . It shou ¢ rccognized that the curves plotied are the
envelopes of the knees at the threshold.

For on-off binary the clutter is reduced by a factor of two
leading to a 3 db decrease in the required intrinsic signal-to-
noise ratio. The number of channels per megacycle is doubled
ov‘er that obtained by using orthogonal binary.

If bi-phase modulation is used RF phase coherent detection
is required. This too will lead to a 3 db decrease in the required
intrinsic signal-to-noise ratio; the number of channels per mega-
cycle will also be doubled.

In general, if N\ 1is the cross correlation coefficient among
the symbols, and if RF phase coherent detection is used, the right
side of equation (A-43) will be multiplied by (_1'1_—” . When

A = -1, we have bi-phase modulation. When M =0, we have
the orthogonal case while X\ >0 indicates positive correlation
and requires an increase in (-Pi) . If post detection decisions
NK /o
are used, the non-orthogonal operation requires multiplication
of the right side of equation (A-43) by (T]::Tm (This appears

to be a reasonable approximation. )

A-21



A.5 Computation of (PS/NK) Versus Channels per Megacycle
for Given (T, T. /N)

We will now develop a computational procedure for calcu-
lating PS/NK versus the number of voice channels per megacycle
for a given (T.T./N). In order to do this, we compute (T. T. /N)co
for the clutterless case. We then narrow the RF band, add
clutter, at the same time increasing (PS/NK) so that the
(T.T./N),, is maintained. As more clutter is added, (i.e.,
more active users) the signal-to-thermal noise ratio can be
increased so as to maintain a constant (T.T./N). If this process
is conﬁﬁued in the limit, the cha.x;nel becomes clutter limited
at the point when the clutter channel capacity equals the thermal
noise channel capacity required to maintain (T. T. /N) o

If equation (A-41) is solved for (Pg/Nk), we obtain

Ps _ 4qd [2q log M + log (M-1)]
NK -

Wo .
1 - —o (K-1) [2q log M + log (M-1)]4 qd
(A-44)
It is clear from equation (A-43) and equation (A-44) that for the

Same parameters

P &)
S -
—— T NK 0 (A-45)
K . Wo K-1) Pg
) ﬁ- - (TK )CO




Let, 2W -
W _(K-1)(Ps/Ng) ;
= - = o Qo !
Q =10 log, o (Pg/N)-10 logy (Pg/Np ) = 10 log, T 1 i
Wo (K'I’us; ”K’OO ) J
(A -46a)
where Q is the intrinsic signal-to-noise ratio multiplexing
penalty, in db. For computational purposes let,
X
Q(X). = 10 loglo (X - 1) (A -46D)
where 2W
X7 W, (KD (PN (A -46¢)

The function X is dependent on the channel parameters as seen
in equation (A-46c). The function Q(X) is shown in Figure 4.
For a given (T.T./N) o = We obtain the corresponding
(PS/NK)oo in db. Thus, the function Q(X) is applicable to
all types of signal alphabets. Assume K>> 1, which is true

in practice. Then

250

X ; (Note PS/NK is not in DB)

(A-47)

A-23



where G = K/2ZW = channels per megacycle, and

6
10 = 106 = 250, is the maximum number of channels
W, 4,000
per megacycle attainable, i.e., by using an SSB-FDM voice
system.
Thus,
P P
10 log ( _S..): 10 log 19 _._S_) + Q(X) (A-48)
10\ Nk N
K o
Then, from equation (A-47),
250
G(X) = (A -49)
X (Pg/Ng)o

There is a (T.T. /N)oo corresponding to (Pg/Nyg) o Which is
held constant. This computation results in the family of curves

shoum in Figures (8} and (£

\Y
av \CJ.

We can now rewrite Q as

r 250 )
Q(G) = 10 log, | 759 'G(PSmK)an (A-50)

Referring back to equation (A-46c) it is seen that when
X =1, Q= oo . Atthis point the channel becomes clutter
limited. Here we have

2W Pg - .
wn Ve w ), -

If we note that

( Ps v _  Pg
NK )oo NoKWo

A-24
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then,
2w _ Ps _ Lo (A-52)
(K-1) Ny K K
For K™ > 1, ?Kl is a parameter which we will call the
o)

clutter limited ''channel capacity' per message while

is the thermal noise capacity per message in the absence of
clutter. In order to maintain a constant (T.T./N), i.e., a
constant performance, it is essential to maintain a constant
channel capacity.

An examination of equation (A-49) shows that the number

. . P
of channels per megacycle is inversely proportional to( i\
P_ . Ny ‘o0

(not in db). Thus a 3 db increase in { 2 ) will halve the

A Nk /oo
number of channels per megacycle. In order to explore this

relationship further, let us substitute equation (A-43) into

equation (A-49). Then,

63.5
G(X) = X aq[2q log,M + logo(M-1)]

(A-53)

From equation (A-53), it is clear that the number of channels
per megacycle is inversely proportional to the activity factor d .

In conventional binary transmission, M = 2, then

45
= A-54
Gy = 3 gg (A-54)

A-25
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On the other hand for the single word binary case q = 1; assume

M >> 1, then,
21

SMX)* X dlog M (A-55)

The efficiency in channels per megacycle of a conventional binary

system to M-ary system both of which use PN-multiplexing is

g G\(X) qZ

where M = exp,m >> 1. Whenm =q, the efficiency varies as
1/q . Thus, for high-quality systems, the M-ary single word
decision technique is far more efficient than the bit-by-bit

decision procedure.

A-26
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A.6 A Utility Function for Choosing a PN-System Operating Point
It is clear from the curves shown in Figure 6 that there are

many acceptable operating points for a given voice quality. Where

power and bandwidth are at a premium a convenient operating

point may be chosen by defining a utility function

U = (PS/NK)db + 1/G for a given (T.T./N) (A-57)

Thus, U is directly proportional to the product of power and the
bandwidth per talker. We can therefore graph U versus

(Pg/N as shown in Figure 7 and operate at the point

K ap
(PS/NK)db where U is minimum. This utility function exchanges
vandwidinh for (PS/NK) in do.

Where downlink power is at a premium and not RF bandwidth
this utility function is not representative of this situation. In this
case, however, the system would be designed such that performance

P
is thermal noise limited, i.e. ,W>>_S_

No

A-27
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APPENDIX B

PN-Multiplexing Systems Using
Analog FM Signaling Techniques

1.1 Mathematical Analysis
In order to develop the theory of PN-multiplexing for

voice signals which frequency modulate a sinusoidal sub-carrier,

it is convenient to use a mathematical model derived in Ref., 3. In

this model the audio output signal-to-noise ratio can be calcul-
ated along with the threshold characteristic which approximates
that which would be obtained with feedback. An interesting pro-
perty of this model is that it postulates an M-ary decision pro-
cedure for locating the filter which contains the desired signal
which is then converted to an analog voltage by an FM discrim-
inator. The threshold characteristic of this model which approx-
imates FM-FB is strongly influenced by the M-ary decision error
probability, which was used in appendix A for the study of digital
techniques. Thus the theory previously developed closely re-

sembles the FM model used here. We will now develop the theory

of pseudo-voice FM using the mathematical model developed in Ref, 3.




The output noisc powcr duc to incoming thermal noise
is given by
2 1 1
07 = = —— (B - l)
n 2 2
121;p 24n
where,
P
2_ .2 S 1

P dNg (P /Ny) [Wo/(ZW)) (K- 1) +1

The decision error noise which essentially determines threshold

behavior is

o2 = But 1)(p+ 2w

n 12 (B-3)
The audio signal power is given by
s?=1/2wW2%[1 - 4+ 1)a]? (B-4)
The audio-output signal-to-noise ratio is given by
(8/M) = 3/2u%n % — Lo rljel” (B-5)

1+p(u+1)u + 2)omp

The knee of the threshold characteristic is obtained by equating

the competing noises. Hence

o = 1

- — (B-6)
2n"p(p + 1)u + 2)

(B-2)
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where,

o =(u/2)exp(-1/217) (B-7)

(That is, the FM index u is equal to (M+l) when Mrepresents
the number of filters used inthe model). At this poin.t (S/N)o is
for all practical purposes |
(S/N), = 3/2u%° (B-8)

At the threshold |

exp(-1/2n%) = n%u® (u + 1) (u + 2) (B-9)
Let nﬁ be the input signal-to-noise ratio at the threshold of
the FMFB receiver, obtained from Equation (B-9). From

Equation (B-2). 9
/ PS \ 2d77_u
=)= (B-10)
k K) Wo 2
1- ity (K_I)Zdnu

”~

When W - o » we obtain the threshold signal-to-noise ratio

when performance is thermal noise limited only. Then from

Eq (B-10)

P
<—S> = 2dnﬁ
N
K/ (B-11)
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The PN-FMFB modulation technique is similar to a higher-
order signal alphabet using multiple FSK. The comparison theory
for digital communication developed in Appendix A assumes binary
sequences. (The general theory developed in Ref. (1) treats multiple
FSK as well.) In the case of multiple FSK, the clutter generated
will be less than in the case of random binary |
sequences, (20) 1t is quite simple to modify the basic relation-
ships simply by including a clutter factor 0 < c <1 which

modifies the clutter term in Equation B-2. Thus,

= i
c
3‘_81;(2_“0) (K-1)+1 (B-13)
It seems reasonable to postulate a value of ¢ = . 50 .

In addition to the clutter factor it is also essential to
derive a modified expression for thé number of channels per

megacycle. This too follows from the model for FMFB used

here. The total bandwidth for PN-FSK is given by
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Wt = 2W + 2(p + 1)Wo = 2W + VoM (B-14)
where 2W is the bandwidth of a single frequendy shifted pseudo-
noise signal. In order to obtain the number of channels per

megacycle, we divide Eq (B-14) by KW, and obtain

250 _ 250 , 250

G = G Gy
or

GG
t - G+ G
H (B-15)

where,

G, = 125/(p +1
u /p+1) (B-16)

is the number of channels per megacycle in a conventional FM

system and

250

G = X (Pg/N

Koo
(B-17)

is the channels per megacycle obtained for the PN-multiplexing

techniques of appendix A.
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band FM), G, = G, or the number of channels per megacycle

is determined by the PN subcarrier. When G >> G“ » G = G“

and behavior is equivalent to conventional multiplexing,

(It appears reasonable to constrain G such that G“> G or equi-
valently, that the PN-subcarrier bandwidth is greater than the
FM bandwidth without the subcarrier, )

The computation procedure for (PS/NK) versus G, is

the same as before. By using Equations B-15, B-16,

we can obtain the performance curves shown in Fig. 6.
Above threshold, the decision error noise can be neg-

lected; performance being limited by thermal noise and clutter.

Then

Ps Ps( Wy
(T.T./N) = 10 IOgIOWK - 10 logl0 NKWC(K,—I)+1-

+ 20 log; u-4

(B-18)

When Wes o

P
_ S
(T.T/N?Do— 10 logl0 dN—K + 20 loglo u~4 (B-19)
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Once again, when the PN-multiplexing loss is neglected by

ting W—= o, (T.T./N) takes on the same form as for

conventional FM above threshold. Equation B-19, however,
contains the pseudo-noise processing gain as well as the FM
modulation index gain.

The additional constraint‘is that for a given FM modulation
index the intrinsic signal-to-noise ratio must be above the
threshold so that Equation BR-18 hold is can easily be checked

by using Equation B-10,



APPENDIX C

Summary of Significant Results in PN-Multiplexing Techniques

C.1 Digital Communications
Test: tone -to-total noise ratio at the knee of the threshold
characteristic is
(T.T./N), = 3 (2mq -3) . (C-1)
(PS/NK) when bandwidth is infinite, i.e., (Pg/Ny),, is given by

(PS/NK)eo =4 qd [Zq log M + log ‘(M-l)‘J; (not in DB) (C-2)

Finite bandwidth Pg/Ng in terms of (Pg/NK),,

10 1084 ‘PS’ NK, =1 loglo (PS, NK, F Q(X) DB {C-3)
The function Q{X) {PN-multiplexing penalty) is

QX) =10 log, , X/(X-1) DB - (C-4)

and channels per megacycle is

_ 250
GX) = m)w (C-5)
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Computational Procedure

a. Graph (T.T./N), asa function of q with m a parameter;
m = logp M (Equation C-1)

b. Graph (Pg/NK),, asa function of q with m = log,M a
parameter (Equation C-2)

c. Graph (T.T. /N)co versus (Pg/Nk)o, with m as a para-
meter

d. Graph universal curve Q(X) Equation C-4

e. Compute 10 loglo(PS/NK) from Equation C~3 for a
given v.a,lue of X.

f. Compute G(X) for same value of X and (Pg/Ng)e

(Equation C=5)

=

From e. and f. a point on (PS/NK) versus G is obtained

for (T.T./N) = (T. T./N)

The general expression for (T; T. /N) is given by;
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Ps
(T.T./N) =2.2

1
- 10 log, ,(M-1)
dNK[_P_S.__ (_YO_) (K-1) + 1] 10
2W

(C -6)
-2q ( P \‘]
M 1 °8 1
-10 1°g1o[-1+ ™M-1) P | 5 N B W T
| % (zw)enra]e/l
, K
2. PN-FM (Above Threshold)
Obtain (T. T./N) when W —». o
Ps
(T’T'/N)FMoo =10 1°g10 7‘?1; + 20 log 10K -4 (C-7)
GG
G =—“—G+G“ (C-8)
where,
G= —220_ p<c<t (C-9)
c -—-—S..-. :
Ne )
and,
. _ 198
% T e (C-10)

Computational Procedure
a. Graph Equation C-7

b. Follow procedure e. » £., g., for digital case

General Result

Pq ' Pg cWo
(T.T. /N)FM =10 10g10 EN—I-(_ -10 ].Og'10 E W K-1)+1

+2010g10p-4 (C-11)
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At the knee of the threshold characteristics

(l/d)<§s—>w =2 nﬁ

K

and

(T.T./N). =10 log nﬁ +20log 4 -7

(C-12)

(C-13)



APPENDIX D
Summary of Performance
Relationships of Conventional Modulation Techniques
This work is a summary of the results in (2) and is sum-

marized here for the sake of completeness

4,1 (%) for SSB

When number of channels is K > 240

' v P
T.T. '~ S -
N )=101°gm (N__\) +9 (D-1)
. ; \ VK /

When number of channels is K < 240

) 7~
T.T.\ _ 'S _
(T) =10 IOFO(E-I;-) -5+6 loglOK , (D 2)
4.2 (lNl) for FM

When number of channels is K > 240

y
T.T.

P
IT. ) _ {_S -
( N ) =10 log,, (NK> +20 log, | p+10.8 (D-3a)



where

b= X A (D-3D)
and
Af = peak deviation
g = index
In addition, we have the relationship
WFM =2 {u +1) ‘v‘v’oK (D-4a)

vr /wrv

- s . . . —
Leit X/ W FM - G - uuwiber i Channels per wegacycie. Then,

125
G= i‘-+_1 (D"4b)

(These results assume that the FDM signal occupies a low
pass bandwidth. )

When number of channels is K < 240

(—T-'—I-)—lol Ps 3.2+6log. K+ 20 1 D-5
\"~N /Y198 Ne| T %810 0810 4 (D-5)

D-2
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4.3 Frequency Division Multiplex Multi-carrier Phase Modulation

For a 1% time overload, we have

T.T Ps 6
(T =10 log10 ﬁ-K— -85+6 log10 Kc +20 loglou (D-6a)

Kc = number of carriers

The channels per megacycle is half that of Equation D4b. Hence,

G= 33:51 (D '6b)

4. 4 Conventional PCM

Interleaved PCM (PCM-AM on-off)

(—T—ﬁl—'-) =2.2 (;i) (1/q)-6 (D-7)

Channels per megacycle for PCM

The duration per bit is

T = Tg /(9K) = 1/(2w) (D-8a)
T =1/(2W,)
Then
G = 1%— (D-8b)
D-3
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Multi-carrier PCM Phase Reversal Modulation (0. 1% of time

overload)
p
T.T. S
(T) =08 | x| Ma-6 (D~9)

Since the bandwidth here is doubled, we have

g = 822 (D-10)

D-4
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Appendix E
THRESHOLD M-ARY DETECTION

ThreAshold M-ary detection differs from greatest-of de-
tection in that a single threshold is set across the outputs of
an array of correlation receivers. A correct decision is in-
dicated if thc filter output which contains the desired signal
exceeds the threshold while all other filter outputs do not. This
type of operation is of significant practical interest when the type
of modulation used is some form of pulse -time modulation (i.e.,
pulse -position, pulse-rate, pulse width, etc). Where natural
pulse -rate modulation is used, it perimits asynchronous oper -
ation with a theoretical improvement factor equal to that obtained
with FM,

For M-ary alphabets of large size, equivalent behaviour
is obtained for coherent and incoherent detection. In addition
it can be shown (16), (17) that channel capacity can be realized
in the threshold case just as for the case of the greatest-of
decision procedure.

From Reference 16 using our symbols, the error prob-
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ability is given by

) "
ot = (M-1) 1 exp(-%yz)dy+ _];_exP(-.%yz)dy
, Verr (1-x)y v
Tp P (E-1)

where Y(p is given in Equation (B-13) with c=1 and r is the ratio of the
threshold to the peak signal amplitude. The threshold which minimizes

the error probability is given by

105(1\42-1) (E-2)

T

By introducing further approximations to (E-1) and using the

1
= =+
T3

methods in Appendix A, it can be shown that the knee in the character~

istic when digital transmission is used is given by

1 yA 1 r N a—

> Y\p = log(M-1)+2log 5 +2Vlog 1/6¢ \/log(M-1)+log 1/eX

For M>> 1, (E-3)

N =10 log M + 2 log 2. (E-4)
When a greatest-of decisionis used we have, for M1,

2
Y\ = 6 log M (E-5)

Thus, the simple threshold M -ary decision case is only 2db worse
than the more complex greatest-of decision procedure. These
results can be put in the standard form of Appendix A by using the

same methods.

-E-2-
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PPM or pulse-rate modulation is a simple type of mod-
ulation technique which exchanges power for bandwidth the
same as FM, giving the same improvement. However, these
time modulations require extremely large peak-power since
for wide deviation the pulse must be very short. This is per-
haps the reason why this modulation has received very little
attention in satellite applications since, here, the repeaters
are peak-power limited. However, pulsed pseudo-noise com-
munications using matched filter reception achieves the im-
provements of wide deviation PPM since the autcocorrelaticon func-
tion is a pulse of short duration and at the same time the peak-
power requiremeﬁts are reduced by using a long pulse. Where
PS/N0 is at a premium, and not bandwidth, it is likely that the
type of exchange of Pg/N, for bandwidth which wide deviation
PPM affords may be much simpler and less expensive than
FMFB. Since FMFB (3) and pPM(15); (16) both yield M-ary
behavior there is little to choose between the two on a theoret-

ical basis.

-E-3-



The threshold behavior in analog PPM can be obtained by
using the same model as in Reference (3) for FMFB. Above
threshold (T. T. /N) is identical to that given in Equation (C-10),
for FMFB where > is the ratio of time deviation to the duration

of the correlation peak.

-E-4-
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Appendix F
F-T MATRIX TECHNIQUES

F.1 Introduction

In this appendix a particular form of pulse-addressing,
which has found some interest in random access communications
applied to tactical army communications, is discussed. The
performance of this technique with respect l.:o high quality
communications over a satellite link is evaluated. The major
interest here is to familiarize the reader with the performance
of pulse addressing techniques, of which the one discussed here

ie turmisal Aec a
-~ eyl _——— =

poecihle madnlatian techniqua for multinle
access satellite communications of good voice quality, it is
inadequate.

An FT-matrix technique can assume many forms. The
curves presented in this report cover only one such form.

The technique selected for analysis and comparison is the

use of a gated FT receiver which uses delta modulation (DM).

This method was chosen for two reasons:




{1} IBM has performed extensive analiyses and
optimizations of this technique for the Army
on a sub-contract to Motorola,

(2) It has significant advantages over other FT

techniques.

The DM-FT approach performs its modulation in two
steps. Fifst, the voice is converted to binary digits by the
delta modulator. Such modulators have been described
extensively in the literature.

Secondly, the binary data is converted into an FT
matrix pattern. This conversion is described in dapfh in tha
Final Design Plan submitted by Motorola to the Army. The
reader can refer to this document for an explanation of the
system and for the development of some of the results to
be presented below.

"In order to evaluate DM-FT, itis necessary to relate
audio S/N to binary error rate in DM. There are two sources

of audio noise using DM. The first is the noise power due



to quantizing, NQ. The second is the noise power due to
binary errors, Np.
F.2 Theoretical-Signal-to-Noise Ratio in Single Integration

Delta Modulators

Definition of symbols:

S = power in test sinusoid at output of delta
demodulator

fg = samples per second in audio channel

fg = high frequency cut-off of DM demod filter

fL = lo.w frequency cut-off of DM demod filter
g = ‘height in volts of one DM step

fg = frequency of test sinusoid

Ngp = noise power at demodulator output due to

binary errors

N Q = noise power at demodulator output due to
quantizing
P, = binary error rate,
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Error Noise Power:
Each error introduces a step function of 2¢ volts into
the final audio bandpass filter., The average power introduced

by these noise step functions at the output of the bandpass

Y

filter is
2nf
2
Np = pefB ‘Y (20/w)” dw 1)
202 $1 1
Ng = S PlB T 1 F-2
E T PeB|f Iy (F-2)
2020 f.
N :.c_ e b
E a8 (F-3)

Quantizing Noise Power;

Under the assumption that the quantizing noise is
uniformly distributed over a range of o volts, tha;t it
is independent from DM sample to sample, and that the

power is uniformly distributed from 0 to fB/Z, we write,

.2 3fH - } asz
N2 O -

F-4
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Output Signal Power:
The output of the saturated system is a triangular
wave with peak to peak amplitude of O'fB/2fs.

The power of the first harmonic is

_ 2.2 , 4.2
S = 20 fB/ﬂ' fS (F-S)

Signal to noise ratio:
Assuming that quantizing and error noise power are
additive, it follows from Eqs. (F-3), (F-4), and (F-5) that,

1265 1,

N. 4.2 3
E Q foL‘lr fs+ 127° p

+ Q2
|

N (F-6)

2 .2
e fos
In the previous paragraphs, it is shown that for a

sinusoid of frequency fg and of sufficient amplitude to

saturate the system the signal-to-noise ratio if given by

3
s 12£5, £
"ETNQ gt ntil e 1an®p 212 (F-7)
F-5
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One other item of informatio

. . ¢
118 required §

Y qu
plete evaluation. This is the relation of P, , the binary error
rate, to the system loading, Deriving such a result is not

a simple chore.

This has been done in the report referred .to previously.
Both simulation and analysis were used to arrive at the
approximate relation,

Kf

Pe = =B (1.63)10°7) (F-8)

where

K is the number of active users (i.e., talkers)
W is the bandwidth in megacycles

fp is the binary data rate.

.
1
Py=]

Substituting Equation (4) into Equation (3) yields,

S 121, £ W

3

_ B'L

N_+N. ~ 2 4 3 7 3.2
E7Q Wi fon +127°(1.63)(10 JKEpfS

(F-9)

F-6



F.3 Experimental Results

Figure F.1 contains a plot of audio S/N in ¢b versus
binary error rate. This is the result of an IBM laboratory
measurement. The result of the lab measurement in Figure
F.1 corresponded closely with the results predicted in
Appendix E.

Figure F.2 contains laboratory measurements which
relate quantizing noise to pulse rate for PCM, single inte-
gration DM and double integration DM. These curves were
measured by de Jager of Phillips. For the single integrator
case, they largely confirm Appendix ¥ Although the curves
were produced for a signal at 800 cps extrapolation to 1
cps is straightforward using Appendix E.

Figure F. 3 indicates the relation of binary error
rate to active users per Megacycle for a FT matrix system.
This result was derived using both analysis and simulation
and is based on the assumption that both desired and undesired

signals arrive at the receiver with equal power.



Combining Figures F.1 and F.3 we have obtained Figure F. 4
These two curves tell the story as far as FT matrix techniques
are concerned. The storyis none too encouraging from the
point of view of telephone quality, For example, in order to

g‘et 40 db audio S/N about 50 mc per talker are needed according
to Figure F. 4.

Let us take a detailed loock at the reasons behind Figure
F.4. Figure F.4 indicates that it is very expensive in band-
width to get telephone quality transmission. The cause of this
is shown in Figure F.3 namely, binary error rate is directly
pProportional to talkers per megacycle. This proportionality is
due tc the nature of FT addressing.

Fach receiver is looki
pulses each bit time. If these pulses are detected, a post -
detection decision that a '"1'" was sent is made. If the
pulses are not detected, the decision is that a "0' was sent.

There are many variations on this scheme. For
example, a 1" could consist of five pulses arranged in a

particular FT pattern and the receiver could decide that a " 1"



was sent if any three of the pulses are detected. This is the
concept of m of n (3 of 5 in this case) logic. Analysis and
simulation have shown that different values of the pair (m,n)
with properly adjusted decision thresholds, all yield approx-
i;xuately the same results as those appearing in Figure F. 3.
The assumptions implicit in Figure F. 3 break down somewhat
in the region of error rate greater than 2%, but this is not
the region of interest for telephone quality.

When a receiver opens a gate to admit a pulse, it will

make an error if its own pulse was not sent but a pulse from

an interfering transmitter appears in the gate. Clearly,

the probabllity Of t a Poisson

3
vail

S ¢cccurry

law. For the probabilities of interest, this im

plieg a linear
dependence of error rate upon the number of pulses on the
air on the frequency slot to which the gate is tuned. This,
in turn, leads to the conclusion that error probability is
proportional to active users per megacycle.

The discussion on how a pulse is falsely detected is a

little naive in that the possibility of cancelling a true pulse



w

was not mentioned. This phenomenon was analyzed and
simulated in detail, and it was concluded that cancellation,
too, results in error rate being directly proportional to
active users per megacycle,

One final remark on Figure F. 3 is in order. It is
assumed therein that all pulses, both desired and unde sired,
arrive at the receiver at equal levels., Should the interfering
pulse power grow, then there occurs a very gradual increase
in error rate for a given value of talkers per magacycle.

The second result leading to Figure F. 4 is that appearing
in Figure F. 1. This curve indicates that audio signal-to-noise

ratio is properticnal to binary error rate he physical reason

for this is evident. Each error causes a noise pulse to cnter
the delta demodulator. The power of the ensemble of noise
pulses is directly proportional to their number and hence to
the probability of binary error.

The audio tone for which Figures F.1 and F. 3 lead to

the result in Figure 4 is not, strictly speaking, a test tone.

I'-10
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The measurements were made for a sinusoid which just saturated
the DM demodulator and then was reduced 3 db at the transmitter.
Unfortunately, the inherent non-linearities in DM are such that

the output power at the test frequency is reduced only 1/2 db

when the transmitted tone power is backed off 3 db from saturation.

This is one factor that makes the relation to test tone to noise
ratio arbitrary.

A second problem is that of companding. Since DM is
sensitive primarily to derivate overloading and the distribution
of the derivative conventional amplitude companding has an
effect on DM entirely different from that on say PCM. On the
other hand de Jager is now experimenting with devices which
function basically as derivative compandors. There would be
a great deal of arbitrariness in incorporating such "companding'"
into the discussion.

Although, no conversion to a true T.T. /N ratio has been
attempted, it can be stated that the curve in Figure 4 are op-
timistic since they represent an audio tone only 1/2 db below

system saturation. Furthermore, the curves are adequate to

F-11



demonstrate the inferiority of FT matrix techniques PN methods
for high-quality telephone transmission.

There are several more aspects of the FT matrix revealed
by Figures 1 to 4 which apparently contradict intuition.

For example, Figure F.2 indicates that signal to quantizing
noise ratio increases at a rate of 9 db per octave of sampling
rate increase for single integration delta. This is a well known
result, However, it is intuitive that the increased sampling rate
per channel should require a wider system bandwidth. Surprisingly,
this is not the case.

If the system bandwidth is held constant, the per channel

P, increases linearly with the per channel sampling rate. Since

0]

rror noise power is directly proportional to Pe and inversely

”

portional tc sampling rate, the error noise power is unchanged.

"3
0

r
On the other hand, Figure F.2 indicates that increasing
per channel sampling rate increases signal to quantizing noise
ratio., This means that in the FT-DM, the per channel Sampling
rate can be increased indefinitely, without any increase in band-

width, reducing quantizing noise to as low a figure as desired.

F-12



It follows that FT-DM is strictly error noise limited.

Now there are many experiments on DM variations now
in progress. Gains in signal to quantizing noise by as much
as 20 db have been obtained. At this time, it appears that
‘ such techniques may well make DM competitive with PCM in
conventional frequency or time division multiplex. However,
since FT matrixing is strictly limited by error noise, these
variations are of no help here. In fact, it is usually detrimental
to break away from straighforward single integration DM be-
cause of increased sensitivity to binary errors.

PCM might appear to have some advantages in an FT
system. This too is a misconception. In Figure F,4, PCM
and DM are compared. The reasons for the superiority of
DM are two fold:

(1) DM has a lower error noise for a given P, than
PCM, and the FT matrix system is error noise limited,

(2) In order to decrease quantizing noise below the
error noise it is necessary to increase the sampling rate per

channel in both DM and PCM. In DM a greater increase in

F-13



rate is required by no increase in total system bandwidth is
is needed. On the other hand, the increase in per channel
sampling rate in PCM requires a proportional increase in
system bandwidth to maintain the signal to error noise ratio.

J/ F.4 The design procedure for the FT matrix system is the
following:
(1) Using Figure 4, determine K/W for the desired

audio S/N. Certain arbitrary assumptions will have to be

g —

made to relate this to a desired T.T./N. The system band-

width is then the product of the number of active users by K/W.

(2) Quantizing noise must be reduced below the level
of the error noise by increasing the sampling rate
Figure F.5 indicates the required sampling rate per channel
using the bandwidth per channel obtained in step (1). It should
be borne in mind that increasing per channel sampling rate
has no effect on error noise (except for errors introduced by
intrinsic channel noise).

Let us summarize the principal conclusions to be drawn

from Figures F.1 to F. 5.
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(1) For telephone quality FT matrixing requires
exorbicant bandwidths.
(2) FT matrix systems are error noise limited.

(3) Single integration DM is better than double

integration delta or PCM in an FT matrix system because of

its superior error noise immunity.

(4) Neglecting thermal noise, the DM sampling rate
can be increased without paying a bandwidth penalty in an
FT system,

(5) When these results are extrapolated to a system
which frequency division multiplexes before delta modulation,
the system bandwidth requirements are unchanged.

FT matrixing techniques require exorbitant bandwidths
to achieve T.T. /N ratios in the vicinity of 40 and 50 db.
They should be re jected for this reason.

PN techniques can attain figures near 10 channel per
megacycle as noted above. FT systems yield figures like
.01 channel per megacycle.

FT systems have applicability when the received

F-15



signal powers from different stations assume a wide range

(i.e., the so-called synamic range problem) or when low

~audio quality (say 13 to 20 db T. T. /N) is acceptable,

(In these calculations the 25% activity factor has not been
included since this hardly improves the extremely inefficient
bandwidth utilization which characterizes such techniques. )

The use of PN techniques combined with frequency-
hopping has many advantages. The results of this Appendix (F)
are not to be construed as reflecting adversely on such a‘com—
bined system. The combined system is entirely different from
the FT matrix analyzed above since each pulse in the FT matrix

has a WT product of one,

F-16




2IVY AOALT KADULG SA OUYDY ISION AOALT WA 0] 1PUSIS T 2ANSLT

9oy 10113 Aipoulg

t to’ 100 1000 10000’
N
N
N
NN
//
N
/.//
3404 Buyjdwos "N
93 ¥'8€ © YiM Wil Aq pauopiag
juswainsoayy qo7
1050949 uoypibauj a|buig
sd> 0o’ | = auo4 4534 Jo Aouanbaiy

ot

0¢

0€

oy

0s

qp ut N/s oIpny

F-17



NOd puv WA +0f 2104 Sunquivs sa oyvy aSION 07 1PUSIS Surzyguond g 24nSe

puodag dad sasjng

mo_.N mo_ vo_.m vo_.m vo_.N vo_
ot
sd> gpg 4o Jobo
3P a¢| 04 PBINSDSW J19M SIAIND ISBY)
174
o€
o
o
w
&
8
or S ot
o T
s <]
3
=
5
@
\ 0s w
&
g
JoyoaBayu| 9)Buis Wq o
09
\ 1/ o
rd \ /
toyp1Bayu| 3qnog wa \ zl f\oﬁo._ Bugjdums oxg)
Wi
08




10%

1%

Binary Error Rate

0.1%

0.01%

ANANAN

fB = binary data rate

/

.03 05 N 2 3 ] 1 2 3

Active Users Per Megacycle

Figure F.3 Evvor Rate vs K/mc for an FT Matvix System

!
1

i

o




wWaISAS XIAIVW L UD L0L DU/ Sa OUDY ISION 0] 1DUSIS OIPRY F o] dANSLT

a|2Ao0Bayy 194 s1esn ALY

ot 1 -0t

Nl

oL

ol

77
/

//

N
//LZ/

WOd

/)
/

/

/]

]!

0C

o€

0¢

0L

qp Ui o140y 3s10NJ-0}- |bUBIg O1pNYy

F-20




Kilopulses Per Second

120

100

80

40

20

/

/ DM Single lnte?raﬁc n

;
=
/

L~
/1 ] o
/ ¢ —
L]
]
/é
r
IMc¢ 10Mc 100Mc 1,000Mc

Bandwidth Per Talker

Figurve F.5 Bandwidth Requivement as a Function of Evvor

Rate fro PCM and Single Integrvation Delta Modulation

F-21



ADDENDUM

CLUTTER CALCULATION

The peak signal power to noise power ratio at the output of a
matched filter (or correlation receiver) is derived in this addendum.
Analysis is general in that it is applicable to general classes of pseudo-
noise signals. |

When this signal-to-noise ratio is combined with the assumption that
the clutter is a white Gaussian process, mathematical expressions for
the error probability can be'obtained. If the clutter is a random process
consisting of an ensemble of Bernoulli random variable then exact
calculations of the error probability show that the Gaussian error
probability is a good approximation provided the signal-to-noise ratio
g reduced by 2 db

were obtained at IBM by using computer simulation.



The general mathematical expression for the nth signal is,

zn(t) = A exp{j[w°t+nAwt+¢n(t)]}; 0< t< T 1)
n=1, 2, ..., M
where
T = time duration of signal
Aw = 2%' = frequency shift

w, = carrier (or IF) frequency

¢n(t) = pseudo random phase modulation.
This angle can contain a message component as well, which varies at

a much slower rate. Of particular interest is,

exp { jﬂn(t)} ={, -1, ..., -1, -1, 1) =N bit pseudo random signal

| @)
Then,
AT = % = time duration of pseudo-noise bit
1 N ca oy ; .
W= AT = 2T = ideal low-pass bandwidth.

The received signal has the form,

zR(t) zn(t) + zc(t) + n(t)

@)

zc(t) clutter signal

n(t) =complex white gaussian noise process of spectral

density No watts per cps.

The clutter is given by,
z (t) = T A ex jl(w +pAW(t-T )+ t-T
c 2 A P (il +paw) o) ﬁp( Ry

p#n *)
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The output of the matched filter is,

T ~ T

p
Zn(’T)z ‘) ozn(t)ziit+ T)dt+ .) . zc(t)z*n(t +T)dt

T
+S n(t)z*n( t+T)dt (3)

o
where * means the complex conjugate of the function.

At the instant of match the output of a matched filter (or active
correlator) is given by, ‘
Z (0) = ST |z ()] 2 dt + S‘Tz (t)z* (t)dt+ STn(t)z*(t)dt (6)
n n C n n

o o o

The predetection signal-to-noise (plus clutter) power ratio at the instant of

match is,
T 2 2
| _Y | zn(t)| dt |
"12" o

n X @

li (' r s PR R PR N PO |

2 | ‘) LLC\L; T o1y ) a*-'n\u, e
o .

The peak energy obtained at the output of the matched filter is given

by,
T T
2 2 2
= = = 8
E (peak) g | | z (t) |~ dt S A dt = A T (®)
o o
Thus,
2 2
’ 2(a_ T)

T 2 )
iSJZJﬂ+Mﬂhyﬂdﬂ
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It is now necessary to calculate the denominator of
Equation (9), for example, the clutter plus thermal noise power at
the output of the matched filter. (From here on the term matched filter
will mean any correlation device.)

From Equations (1), (4), and (5) we have,

.T
Zn = Iz): AnAp exp{jep} \ oexp{j[ (p-n)Awt-fﬂp(t -Tp)-ﬂn(t)] }dt
pfén
+ S n(t)An exp {-j [wot + nAwt+ yln(t)]} dt (10)
o

where ep = (wo+ pPAW) "I'p is an arbitrary(constanf phase angle. Let,

T
1 (° .
N eplilpmact+ gt -T) g @y a  a
and
T
2, = S ] n(t)An exp {-j [wot +nAwt+¢n(t)]}dt (12)

Substituting Equations (11) and (12) into Equation (10) yields,
= i +
Zn T f AnAp an exp j© p <I>N ] (13)
pfn 5
It is now necessary to compute | an » the mean square noise plus

clutter;

2 2 '
1z 1" =(AT)" =2 = AA @® & * expj(® -0)
n n p r P T mpOr P r
> pfn rin ,
* .
+] <1>N| + TA_ ?AP 2 o expj®_ (14)
pfn
* P
+ TAn % Ar q’nr tI)N exp (—]en)
rfn
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Now,

exp j (6 -6 )
P r

|
O =
T T

- _,
N

Thus, the total noise power is

2 2 2 2 2
[z, 1" = D" = Aals |“a]

where p#n

T
2 _ s . 2
| @Nl = So An exp { J[wo+ nA w)t + ¢n(t)]} n(t)dt |
The complex noise has the form
n(t) = A(t) exp {jlw t+O ()]}

=[ XN(t)+ j YN(t)] exp ju t
where

|3V
N

=Y. = -?%-n = 0., = thermal noise power

The functions {XN(t), YN(t)} are Hilbert transforms of each other .

LS -
d1UuSy

T
2 . 2
|<I>N| = 2| So XN(t)An exp { J[nAwt+¢n(t)]}dt|
If we now represent Equation (22) by samples at points separated

by t =1/W, (independent sample points of the Hilbert component) and

replace the integral by a sum we have,

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)



5 An 2 WT WT
=2 —_) -1 -
log1®=2(57) 5 2 e {-ilndatyoc)D
. -j - X X 23
exp {-j[#,(t) - F ()] X (e)X (e ) (23)
where,
2 .
XN(ti)XN(tq) = O‘N = WNo ; i=q (24)
=0 ; i#
Hence,
2 2
[ L | © = 2(A°T)N_ . (25)
From Equations (17) and (25) we have for the noise power,
2 2 2 2
|z | =(AT)2 T A |® |T+2(A TN (26)
n n p' np n o
ofn
where,
o 2 1 T 2
%l = T2 1 etilemacg (-7 )- 6 (0]} at
o p p n
a7
Equation (27) is the Ambiguity Function. The signal-to-noise
ratio at the output of the matched filter is,
» 1
T, ~ (28)
1 A 2 — No
2 Z( A ) | q)n I * 2
P n P A T
n
p#n
If the clutter is zero we obtain the standard thermal noise,signal-
2 An T En(peak) ZEn ,
to-noise ratio = = =
n N N N , where En
o o o
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the average signal energy. The term to the left is the clutter contributed

a
-3

o+
ot
>
(44
[»]
[
o+
"3
e
-+
©Q
=
-+
=
(1]
=]
ot
=2
)
=+
n
=
(]
[« 5
=)
i
(s
[
o}
0
H
[\
=
]
L2 ]
(V]
0O
t
(=9
<
(¢]
0
@]
2}
g}
o
[
[\
o
oo
]
B
[+
o]
(=}

filtering) by the common channel signals.

Let us now assume that the signal addresses are binary signals
which take on positive and negative values and that the frequency shift

is zero (i.e., Aw = 0). Then from Equation (27)

-2 U ‘ 2
e l" === !5 exp{j # (t - T )} exp{-if (1)} at| (29)
T o

At the sample points the integrand is itself a binary signal. I each signal is

a Bernoulli sequence the product is also a Bernoulli sequence. The integrand
contains (N - 'rp) bits where N is the total number of bits and T, van be assuined
to be an integer random variable which has a flat distribution. Changing Equa-

tion (29) from an integral to a sum we find that for a fixed value of 'rp,

Equation (29) for a fixed value of T is simply
—_— 2
2 AT
® T = — N-T 30
| &t p | T > [ o) (30)

where T is the duration of the signal and AT = T/N

If Equation (30) 'is now averaged over variations in 'rp we have

— N
2 2 2
o | =(%) 2 LIN-T)
P T=1 P
2 P 2
_ AT
-(—‘%I-,I) (N-1) = N(T P N>> 1, (31)
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N, we have

Si L
ince, AT

) ‘
e "= % . (32)

Thus, in this special case the peak signal-to-noise power ratio is,

2 1
n = ,
- = +
2N p\A z . )
A2 T n
- - (33)
LA
ow 3 2 N
p#n

The left term in the denominator shows the average clutter energy
spread over the RF bandwidth 2W. It is evident that as the bandwidth is
increased the mutual clutter is spread over a broadband and its effect

is decreased until thermal noise becomes the limiting factor. Thus,

when W — o

= “n = D
"o - N (34)
as required.

Let P be the total satellite pdwer output. Then

2 K A2
P = > —= (35)
p=1

p#n

A
Y
2
Substituting Equation (35) for the clutter gives
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P
The term —I-\I-(-)-

A’ T
= n
2
/ A N\
—— (P- —2)+N
2 W 2) o
AL
] 2-(2)1‘

P
A N
1 n o
_— (1 - +
2W ( 2P ) P

is a constant of the satellite system.

(36)

The channel capacity of the satellite system as the bandwidth

becomes very large is,

C

C

Hence,

W In (14 ) NITS

W N

o)

A

4 —

wcooT(ZP>
2

An
Coo (1- 5P )+2W

Note that the effective bandwidth is,

2W

2 WC
- (o.¢}
A
1 - —H2W
Coo< 2P>

@7

(39)



aﬁd 2

A
2-4WT( 2
nos e 2P

) (40)

If all signals are multiplexed at equal power we have, from

Equation (35),

2
Ay 1
2P K

and Equation (40) becomes

> 4WeT ]
n" = == (41)
In particular, if 2W >> Coo'
2CooT
e ST K (42)
and communication is thermal noise limited. On the other hand if
C >>2W and K>>1,
00
. AWT
*!W = K 43)
and communications is clutter limited.
Another important class of signals is the PN frequency shifted
alphabet. Here an address is a frequency shift; each signal has the
same pseudo-noise binary phase modulation. In this case,
2 1 T .
le |7 = — | exp {jl(p-n)Aw t+ @(t-T )«
np P
T o 2
-g1} | @4)

The clutter power is given by the ambiguity function.
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